The module of Kähler differentials
Eric Walker cew028@uark.edu

CARES

12 October 2021

Outline

Topics:

- Why?
- Derivations
- Definition of the Kähler differentials
- Construction of the Kähler differentials
- The first fundamental exact sequence
- The second fundamental exact sequence
- Where do you go from here?

Outline

Topics:

- Why?
- Derivations
- Definition of the Kähler differentials
- Construction of the Kähler differentials
- The first fundamental exact sequence
- The second fundamental exact sequence
- Where do you go from here?

Conventions:

- k is a ring, and all rings are commutative and unital
- a k-algebra is a ring A with a structure $\operatorname{map} \varphi: k \rightarrow A$

Why?

Why?

Let's think about differentiation the way your calculus 1 students* think about differentiation:

Why?

Let's think about differentiation the way your calculus 1 students* think about differentiation:

Let $f, g \in \mathbf{R}[x]$. To take a derivative $D_{x}[-]$ is to know the following rules:

Why?

Let's think about differentiation the way your calculus 1 students* think about differentiation:

Let $f, g \in \mathbf{R}[x]$. To take a derivative $D_{x}[-]$ is to know the following rules:
(1) $D_{x}[c]=0$ if $c \in \mathbf{R}$

Why?

Let's think about differentiation the way your calculus 1 students* think about differentiation:

Let $f, g \in \mathbf{R}[x]$. To take a derivative $D_{x}[-]$ is to know the following rules:
(1) $D_{x}[c]=0$ if $c \in \mathbf{R}$
(2) $D_{x}\left[x^{n}\right]=n x^{n-1}$

Why?

Let's think about differentiation the way your calculus 1 students* think about differentiation:

Let $f, g \in \mathbf{R}[x]$. To take a derivative $D_{x}[-]$ is to know the following rules:
(1) $D_{x}[c]=0$ if $c \in \mathbf{R}$
(2) $D_{x}\left[x^{n}\right]=n x^{n-1}$
(3) $D_{x}[f+g]=D_{x}[f]+D_{x}[g]$

Why?

Let's think about differentiation the way your calculus 1 students* think about differentiation:

Let $f, g \in \mathbf{R}[x]$. To take a derivative $D_{x}[-]$ is to know the following rules:
(1) $D_{x}[c]=0$ if $c \in \mathbf{R}$

2 $D_{x}\left[x^{n}\right]=n x^{n-1}$
(3) $D_{x}[f+g]=D_{x}[f]+D_{x}[g]$
(4) $D_{x}[f g]=D_{x}[f] g+f D_{x}[g]$

Why?

Let's think about differentiation the way your calculus 1 students* think about differentiation:

Let $f, g \in \mathbf{R}[x]$. To take a derivative $D_{x}[-]$ is to know the following rules:
(1) $D_{x}[c]=0$ if $c \in \mathbf{R}$
(2) $D_{x}\left[x^{n}\right]=n x^{n-1}$
(3) $D_{x}[f+g]=D_{x}[f]+D_{x}[g]$
(4) $D_{x}[f g]=D_{x}[f] g+f D_{x}[g]$
(5) etc.

Why?

Let's think about differentiation the way your calculus 1 students* think about differentiation:

Let $f, g \in \mathbf{R}[x]$. To take a derivative $D_{x}[-]$ is to know the following rules:
(1) $D_{x}[c]=0$ if $c \in \mathbf{R}$
2) $D_{x}\left[x^{n}\right]=n x^{n-1}$
(3) $D_{x}[f+g]=D_{x}[f]+D_{x}[g]$
(4) $D_{x}[f g]=D_{x}[f] g+f D_{x}[g]$

5 etc.
As algebraists, this is formal symbol moving, not ε-neighborhoods.

Why?

Let's think about differentiation the way your calculus 1 students* think about differentiation:

Let $f, g \in \mathbf{R}[x]$. To take a derivative $D_{x}[-]$ is to know the following rules:
(1) $D_{x}[c]=0$ if $c \in \mathbf{R}$
(2) $D_{x}\left[x^{n}\right]=n x^{n-1}$
(3) $D_{x}[f+g]=D_{x}[f]+D_{x}[g]$
(4) $D_{x}[f g]=D_{x}[f] g+f D_{x}[g]$

5 etc.
As algebraists, this is formal symbol moving, not ε-neighborhoods.
(But will a geometric picture remain?)

Derivations

Derivations

Definition. Let k be a ring. Let A be an k-algebra (i.e., there is a structure map $\varphi: k \rightarrow A$). Let M be an A-module.

Derivations

Definition. Let k be a ring. Let A be an k-algebra (i.e., there is a structure map $\varphi: k \rightarrow A$). Let M be an A-module. A k-linear derivation of A with coefficients in M is a homomorphism of abelian groups $\delta: A \rightarrow M$ such that

Derivations

Definition. Let k be a ring. Let A be an k-algebra (i.e., there is a structure map $\varphi: k \rightarrow A$). Let M be an A-module. A k-linear derivation of A with coefficients in M is a homomorphism of abelian groups $\delta: A \rightarrow M$ such that
(1) $\delta \varphi: k \rightarrow M$ is the zero map

Derivations

Definition. Let k be a ring. Let A be an k-algebra (i.e., there is a structure map $\varphi: k \rightarrow A$). Let M be an A-module. A k-linear derivation of A with coefficients in M is a homomorphism of abelian groups $\delta: A \rightarrow M$ such that
(1) $\delta \varphi: k \rightarrow M$ is the zero map
(2) δ satisfies the Leibniz rule: for all $f, g \in A$,

$$
\delta(f g)=\delta(f) g+f \delta(g)
$$

Derivations

Definition. Let k be a ring. Let A be an k-algebra (i.e., there is a structure map $\varphi: k \rightarrow A$). Let M be an A-module. A k-linear derivation of A with coefficients in M is a homomorphism of abelian groups $\delta: A \rightarrow M$ such that
(1) $\delta \varphi: k \rightarrow M$ is the zero map
(2) δ satisfies the Leibniz rule: for all $f, g \in A$,

$$
\delta(f g)=\delta(f) g+f \delta(g)
$$

This is some of the cal 1 rules... sorta. Is it enough?

Derivations

Let $f, g \in A$.

Derivations

Let $f, g \in A$.
(1) Sum Rule. $\delta(f+g)=\delta(f)+\delta(g)$, since δ is a homomorphism of abelian groups.

Derivations

Let $f, g \in A$.
(1) Sum Rule. $\delta(f+g)=\delta(f)+\delta(g)$, since δ is a homomorphism of abelian groups.
(2) Power Rule. Let $n=2$.

Derivations

Let $f, g \in A$.
(1) Sum Rule. $\delta(f+g)=\delta(f)+\delta(g)$, since δ is a homomorphism of abelian groups.
(2) Power Rule. Let $n=2$.

$$
\delta\left(f^{2}\right)=\delta(f \cdot f)=\delta(f) f+f \delta(f)
$$

Derivations

Let $f, g \in A$.
(1) Sum Rule. $\delta(f+g)=\delta(f)+\delta(g)$, since δ is a homomorphism of abelian groups.
(2) Power Rule. Let $n=2$.

$$
\begin{aligned}
\delta\left(f^{2}\right)=\delta(f \cdot f) & =\delta(f) f+f \delta(f) \\
& =2 f \delta(f)
\end{aligned}
$$

Derivations

Let $f, g \in A$.
(1) Sum Rule. $\delta(f+g)=\delta(f)+\delta(g)$, since δ is a homomorphism of abelian groups.
(2) Power Rule. Let $n=2$.

$$
\begin{aligned}
\delta\left(f^{2}\right)=\delta(f \cdot f) & =\delta(f) f+f \delta(f) \\
& =2 f \delta(f)
\end{aligned}
$$

Suppose the power rule holds for $n=k-1$.

Derivations

Let $f, g \in A$.
(1) Sum Rule. $\delta(f+g)=\delta(f)+\delta(g)$, since δ is a homomorphism of abelian groups.
(2) Power Rule. Let $n=2$.

$$
\begin{aligned}
\delta\left(f^{2}\right)=\delta(f \cdot f) & =\delta(f) f+f \delta(f) \\
& =2 f \delta(f)
\end{aligned}
$$

Suppose the power rule holds for $n=k-1$.

$$
\delta\left(f^{k}\right)=\delta\left(f \cdot f^{k-1}\right)=\delta(f) f^{k-1}+f \delta\left(f^{k-1}\right)
$$

Derivations

Let $f, g \in A$.
(1) Sum Rule. $\delta(f+g)=\delta(f)+\delta(g)$, since δ is a homomorphism of abelian groups.
(2) Power Rule. Let $n=2$.

$$
\begin{aligned}
\delta\left(f^{2}\right)=\delta(f \cdot f) & =\delta(f) f+f \delta(f) \\
& =2 f \delta(f)
\end{aligned}
$$

Suppose the power rule holds for $n=k-1$.

$$
\begin{aligned}
\delta\left(f^{k}\right)=\delta\left(f \cdot f^{k-1}\right) & =\delta(f) f^{k-1}+f \delta\left(f^{k-1}\right) \\
& =\delta(f) f^{k-1}+f(k-1) f^{k-2} \delta(f)
\end{aligned}
$$

Derivations

Let $f, g \in A$.
(1) Sum Rule. $\delta(f+g)=\delta(f)+\delta(g)$, since δ is a homomorphism of abelian groups.
(2) Power Rule. Let $n=2$.

$$
\begin{aligned}
\delta\left(f^{2}\right)=\delta(f \cdot f) & =\delta(f) f+f \delta(f) \\
& =2 f \delta(f)
\end{aligned}
$$

Suppose the power rule holds for $n=k-1$.

$$
\begin{aligned}
\delta\left(f^{k}\right)=\delta\left(f \cdot f^{k-1}\right) & =\delta(f) f^{k-1}+f \delta\left(f^{k-1}\right) \\
& =\delta(f) f^{k-1}+f(k-1) f^{k-2} \delta(f) \\
& =\delta(f) f^{k-1}+(k-1) f^{k-1} \delta(f)
\end{aligned}
$$

Derivations

Let $f, g \in A$.
(1) Sum Rule. $\delta(f+g)=\delta(f)+\delta(g)$, since δ is a homomorphism of abelian groups.
(2) Power Rule. Let $n=2$.

$$
\begin{aligned}
\delta\left(f^{2}\right)=\delta(f \cdot f) & =\delta(f) f+f \delta(f) \\
& =2 f \delta(f)
\end{aligned}
$$

Suppose the power rule holds for $n=k-1$.

$$
\begin{aligned}
\delta\left(f^{k}\right)=\delta\left(f \cdot f^{k-1}\right) & =\delta(f) f^{k-1}+f \delta\left(f^{k-1}\right) \\
& =\delta(f) f^{k-1}+f(k-1) f^{k-2} \delta(f) \\
& =\delta(f) f^{k-1}+(k-1) f^{k-1} \delta(f) \\
& =k f^{k-1} \delta(f)
\end{aligned}
$$

Derivations

(3) Constant Rule.

Derivations

(3) Constant Rule. What are constants?

Derivations

(3) Constant Rule. What are constants? In the cal 1 example, the constants are $c \in \mathbf{R}$, and polynomials live in $\mathbf{R}[x]$.

Derivations

(3) Constant Rule. What are constants? In the cal 1 example, the constants are $c \in \mathbf{R}$, and polynomials live in $\mathbf{R}[x]$. Since $\mathbf{R}[x]$ is a \mathbf{R}-algebra, \mathbf{R} plays the role of k and $\mathbf{R}[x]$ is A, and $\varphi: \mathbf{R} \rightarrow \mathbf{R}[x]$ is the natural map.

Derivations

(3) Constant Rule. What are constants? In the cal 1 example, the constants are $c \in \mathbf{R}$, and polynomials live in $\mathbf{R}[x]$. Since $\mathbf{R}[x]$ is a \mathbf{R}-algebra, \mathbf{R} plays the role of k and $\mathbf{R}[x]$ is A, and $\varphi: \mathbf{R} \rightarrow \mathbf{R}[x]$ is the natural map. Even outside the setting of polynomial rings, elements in $\varphi(k) \subseteq A$ are still considered constants. Let $c \in k$.

Derivations

(3) Constant Rule. What are constants? In the cal 1 example, the constants are $c \in \mathbf{R}$, and polynomials live in $\mathbf{R}[x]$. Since $\mathbf{R}[x]$ is a \mathbf{R}-algebra, \mathbf{R} plays the role of k and $\mathbf{R}[x]$ is A, and $\varphi: \mathbf{R} \rightarrow \mathbf{R}[x]$ is the natural map. Even outside the setting of polynomial rings, elements in $\varphi(k) \subseteq A$ are still considered constants. Let $c \in k$.

$$
\delta(\varphi(c))=\delta \varphi(c)=0
$$

Derivations

(3) Constant Rule. What are constants? In the cal 1 example, the constants are $c \in \mathbf{R}$, and polynomials live in $\mathbf{R}[x]$. Since $\mathbf{R}[x]$ is a \mathbf{R}-algebra, \mathbf{R} plays the role of k and $\mathbf{R}[x]$ is A, and $\varphi: \mathbf{R} \rightarrow \mathbf{R}[x]$ is the natural map. Even outside the setting of polynomial rings, elements in $\varphi(k) \subseteq A$ are still considered constants. Let $c \in k$.

$$
\delta(\varphi(c))=\delta \varphi(c)=0
$$

4 Constant Multiple Rule.

Derivations

(3) Constant Rule. What are constants? In the cal 1 example, the constants are $c \in \mathbf{R}$, and polynomials live in $\mathbf{R}[x]$. Since $\mathbf{R}[x]$ is a \mathbf{R}-algebra, \mathbf{R} plays the role of k and $\mathbf{R}[x]$ is A, and $\varphi: \mathbf{R} \rightarrow \mathbf{R}[x]$ is the natural map. Even outside the setting of polynomial rings, elements in $\varphi(k) \subseteq A$ are still considered constants. Let $c \in k$.

$$
\delta(\varphi(c))=\delta \varphi(c)=0
$$

(4) Constant Multiple Rule.

$$
\delta(\varphi(c) \cdot f)=\delta(\varphi(c)) f+\varphi(c) \delta(f)
$$

Derivations

(3) Constant Rule. What are constants? In the cal 1 example, the constants are $c \in \mathbf{R}$, and polynomials live in $\mathbf{R}[x]$. Since $\mathbf{R}[x]$ is a \mathbf{R}-algebra, \mathbf{R} plays the role of k and $\mathbf{R}[x]$ is A, and $\varphi: \mathbf{R} \rightarrow \mathbf{R}[x]$ is the natural map. Even outside the setting of polynomial rings, elements in $\varphi(k) \subseteq A$ are still considered constants. Let $c \in k$.

$$
\delta(\varphi(c))=\delta \varphi(c)=0
$$

(4) Constant Multiple Rule.

$$
\begin{aligned}
\delta(\varphi(c) \cdot f) & =\delta(\varphi(c)) f+\varphi(c) \delta(f) \\
& =\varphi(c) \delta(f)
\end{aligned}
$$

Derivations

(3) Constant Rule. What are constants? In the cal 1 example, the constants are $c \in \mathbf{R}$, and polynomials live in $\mathbf{R}[x]$. Since $\mathbf{R}[x]$ is a \mathbf{R}-algebra, \mathbf{R} plays the role of k and $\mathbf{R}[x]$ is A, and $\varphi: \mathbf{R} \rightarrow \mathbf{R}[x]$ is the natural map. Even outside the setting of polynomial rings, elements in $\varphi(k) \subseteq A$ are still considered constants. Let $c \in k$.

$$
\delta(\varphi(c))=\delta \varphi(c)=0
$$

(4) Constant Multiple Rule.

$$
\begin{aligned}
\delta(\varphi(c) \cdot f) & =\delta(\varphi(c)) f+\varphi(c) \delta(f) \\
& =\varphi(c) \delta(f)
\end{aligned}
$$

In almost all contexts we will care about, $\varphi: k \rightarrow A$ is injective, so we will typically write c for $\varphi(c)$, and then $\delta(c f)=c \delta(f)$.

Derivations

Denote the set of all k-linear derivations $\delta: A \rightarrow M$ by

$$
\operatorname{Der}_{k}(A ; M)
$$

Derivations

Denote the set of all k-linear derivations $\delta: A \rightarrow M$ by

$$
\operatorname{Der}_{k}(A ; M)
$$

By the "Constant Multiple Rule," δ is a k-module homomorphism, so $\operatorname{Der}_{k}(A ; M) \subseteq \operatorname{Hom}_{k}(A, M)$.

Derivations

Denote the set of all k-linear derivations $\delta: A \rightarrow M$ by

$$
\operatorname{Der}_{k}(A ; M)
$$

By the "Constant Multiple Rule," δ is a k-module homomorphism, so $\operatorname{Der}_{k}(A ; M) \subseteq \operatorname{Hom}_{k}(A, M)$.

Not only that, but $\operatorname{Der}_{k}(A ; M)$ is an A-submodule via the action $(f \cdot \delta)(g)=f \delta(g)$. We can add, subtract, and scale derivations.

Definition of the Kähler differentials

Definition of the Kähler differentials

Definition. The module of Kähler differentials of A over $k, \Omega_{A / k}$,

$$
\Omega_{A / k}
$$

Definition of the Kähler differentials

Definition. The module of Kähler differentials of A over $k, \Omega_{A / k}$, along with the universal derivation $d: A \rightarrow \Omega_{A / k}$, satisfy the following universal property.

$$
A \xrightarrow{d} \Omega_{A / k}
$$

Definition of the Kähler differentials

Definition. The module of Kähler differentials of A over $k, \Omega_{A / k}$, along with the universal derivation $d: A \rightarrow \Omega_{A / k}$, satisfy the following universal property.

Let $\delta: A \rightarrow M$ be an k-linear derivation.

$$
\begin{gathered}
A \xrightarrow{d} \Omega_{A / k} \\
\delta \\
\vdots \\
M
\end{gathered}
$$

Definition of the Kähler differentials

Definition. The module of Kähler differentials of A over $k, \Omega_{A / k}$, along with the universal derivation $d: A \rightarrow \Omega_{A / k}$, satisfy the following universal property.

Let $\delta: A \rightarrow M$ be an k-linear derivation. There exists a unique A-module homomorphism $\Omega_{A / k} \rightarrow M$ such that the following diagram commutes.

Definition of the Kähler differentials

Definition. The module of Kähler differentials of A over $k, \Omega_{A / k}$, along with the universal derivation $d: A \rightarrow \Omega_{A / k}$, satisfy the following universal property.

Let $\delta: A \rightarrow M$ be an k-linear derivation. There exists a unique A-module homomorphism $\Omega_{A / k} \rightarrow M$ such that the following diagram commutes.

That is, there is an isomorphism of A-modules

$$
\operatorname{Hom}_{A}\left(\Omega_{A / k}, M\right) \cong \operatorname{Der}_{k}(A ; M)
$$

given by composition with the universal derivation $d: A \rightarrow \Omega_{A / \underline{\underline{\underline{\underline{k}}}}}$.

Definition of the Kähler differentials

We should always have universal property concerns!

Definition of the Kähler differentials

We should always have universal property concerns!
A super basic exercise: $\Omega_{A / k}=0$ when $\varphi: k \rightarrow A$.

Definition of the Kähler differentials

We should always have universal property concerns!
A super basic exercise: $\Omega_{A / k}=0$ when $\varphi: k \rightarrow A$.
$\varphi(k)=A$ so since $\delta \varphi=0, \delta: A \rightarrow M$ is 0 .

Definition of the Kähler differentials

We should always have universal property concerns!
A super basic exercise: $\Omega_{A / k}=0$ when $\varphi: k \rightarrow A$. $\varphi(k)=A$ so since $\delta \varphi=0, \delta: A \rightarrow M$ is 0 .

$$
\operatorname{Hom}_{A}\left(\Omega_{A / k}, M\right) \cong \operatorname{Der}_{k}(A ; M)=0
$$

Definition of the Kähler differentials

We should always have universal property concerns!
A super basic exercise: $\Omega_{A / k}=0$ when $\varphi: k \rightarrow A$. $\varphi(k)=A$ so since $\delta \varphi=0, \delta: A \rightarrow M$ is 0 .

$$
\operatorname{Hom}_{A}\left(\Omega_{A / k}, M\right) \cong \operatorname{Der}_{k}(A ; M)=0
$$

But what about in general?

Construction of the Kähler differentials

Construction of the Kähler differentials

Here's the easiest way to build $\Omega_{A / k}$. Let

$$
F=\bigoplus_{f \in A} A \cdot d f
$$

Construction of the Kähler differentials

Here's the easiest way to build $\Omega_{A / k}$. Let

$$
F=\bigoplus_{f \in A} A \cdot d f
$$

Let $d: A \rightarrow F$ be $d(f)=d f$. Define

Construction of the Kähler differentials

Here's the easiest way to build $\Omega_{A / k}$. Let

$$
F=\bigoplus_{f \in A} A \cdot d f
$$

Let $d: A \rightarrow F$ be $d(f)=d f$. Define

$$
K=F / \sim
$$

Construction of the Kähler differentials

Here's the easiest way to build $\Omega_{A / k}$. Let

$$
F=\bigoplus_{f \in A} A \cdot d f
$$

Let $d: A \rightarrow F$ be $d(f)=d f$. Define

$$
K=F / \sim
$$

where the relations are

Construction of the Kähler differentials

Here's the easiest way to build $\Omega_{A / k}$. Let

$$
F=\bigoplus_{f \in A} A \cdot d f
$$

Let $d: A \rightarrow F$ be $d(f)=d f$. Define

$$
K=F / \sim
$$

where the relations are

- $d(f+g)=d f+d g$,

Construction of the Kähler differentials

Here's the easiest way to build $\Omega_{A / k}$. Let

$$
F=\bigoplus_{f \in A} A \cdot d f
$$

Let $d: A \rightarrow F$ be $d(f)=d f$. Define

$$
K=F / \sim
$$

where the relations are

- $d(f+g)=d f+d g$,
- $d(f g)=d f \cdot g+f \cdot d g$,

Construction of the Kähler differentials

Here's the easiest way to build $\Omega_{A / k}$. Let

$$
F=\bigoplus_{f \in A} A \cdot d f
$$

Let $d: A \rightarrow F$ be $d(f)=d f$. Define

$$
K=F / \sim
$$

where the relations are

- $d(f+g)=d f+d g$,
- $d(f g)=d f \cdot g+f \cdot d g$,
- $d \varphi(c)=0$.

Construction of the Kähler differentials

Easy exercise: by construction, K along with the map $d: A \rightarrow K$ satisfies the universal property of $\Omega_{A / k}, d$.

Construction of the Kähler differentials

Easy exercise: by construction, K along with the map $d: A \rightarrow K$ satisfies the universal property of $\Omega_{A / k}, d$. Idea: this is the formal symbol moving of calculus 1 students. Building K amounts to defining exactly the relations needed, and no more, that guarantee $d: A \rightarrow K$ is a derivation.

Construction of the Kähler differentials

Easy exercise: by construction, K along with the map $d: A \rightarrow K$ satisfies the universal property of $\Omega_{A / k}, d$.
Idea: this is the formal symbol moving of calculus 1 students. Building K amounts to defining exactly the relations needed, and no more, that guarantee $d: A \rightarrow K$ is a derivation.

But this shouldn't necessarily sit well with us: where is the geometry?

Construction of the Kähler differentials

Here's the second easiest way to build $\Omega_{A / k}$. Let

$$
\mu: A \otimes_{k} A \rightarrow A
$$

be $\mu(f \otimes g)=f g$.

Construction of the Kähler differentials

Here's the second easiest way to build $\Omega_{A / k}$. Let

$$
\mu: A \otimes_{k} A \rightarrow A
$$

be $\mu(f \otimes g)=f g$.
Let $I=$ ker μ. Let

$$
K^{\prime}=I / I^{2}
$$

Construction of the Kähler differentials

Here's the second easiest way to build $\Omega_{A / k}$. Let

$$
\mu: A \otimes_{k} A \rightarrow A
$$

be $\mu(f \otimes g)=f g$.
Let $I=\operatorname{ker} \mu$. Let

$$
K^{\prime}=I / I^{2}
$$

Let $d: A \rightarrow K^{\prime}$ be defined by $d(f)=1 \otimes f-f \otimes 1$.

Construction of the Kähler differentials

Medium exercise: by construction, K^{\prime} along with the morphism $d: A \rightarrow K^{\prime}$ satisfies the universal property of $\Omega_{A / k}, d$.

Construction of the Kähler differentials

Medium exercise: by construction, K^{\prime} along with the morphism $d: A \rightarrow K^{\prime}$ satisfies the universal property of $\Omega_{A / k}, d$. Algebraic idea: the differential hints that it's ultimately the same algebraic relations, since d forces the Leibniz rule.

Construction of the Kähler differentials

Medium exercise: by construction, K^{\prime} along with the morphism $d: A \rightarrow K^{\prime}$ satisfies the universal property of $\Omega_{A / k}, d$. Algebraic idea: the differential hints that it's ultimately the same algebraic relations, since d forces the Leibniz rule.

But why I / I^{2} ? There's geometry here!

Construction of the Kähler differentials

Medium exercise: by construction, K^{\prime} along with the morphism $d: A \rightarrow K^{\prime}$ satisfies the universal property of $\Omega_{A / k}, d$. Algebraic idea: the differential hints that it's ultimately the same algebraic relations, since d forces the Leibniz rule.

But why I / I^{2} ? There's geometry here!
Thinking in terms of elements of a ring as functions, the module I / I^{2} amounts to functions which vanish modulo vanishing to second order.

Construction of the Kähler differentials

Medium exercise: by construction, K^{\prime} along with the morphism $d: A \rightarrow K^{\prime}$ satisfies the universal property of $\Omega_{A / k}, d$. Algebraic idea: the differential hints that it's ultimately the same algebraic relations, since d forces the Leibniz rule.

But why I / I^{2} ? There's geometry here!
Thinking in terms of elements of a ring as functions, the module I / I^{2} amounts to functions which vanish modulo vanishing to second order.
You can think: take a Taylor series and truncate it to get the first order differentiation. We'll see more geometry later!

Construction of the Kähler differentials

Let $A=k\left[x_{1}, \ldots, x_{n}\right]$. What is $\Omega_{A / k}$? We claim it is

$$
A \cdot d x_{1} \oplus \cdots \oplus A \cdot d x_{n}
$$

Construction of the Kähler differentials

Let $A=k\left[x_{1}, \ldots, x_{n}\right]$. What is $\Omega_{A / k}$? We claim it is

$$
A \cdot d x_{1} \oplus \cdots \oplus A \cdot d x_{n}
$$

Let $M=A d x_{1} \oplus \cdots \oplus A d x_{n}$. The partial derivative $\partial_{i}: A \rightarrow A d x_{i}$ is a derivation, so $\delta=\sum \partial_{i}$ is a derivation $A \rightarrow M$.

$$
A \cdot d x_{1} \oplus \cdots \oplus A \cdot d x_{n}
$$

Construction of the Kähler differentials

Let $A=k\left[x_{1}, \ldots, x_{n}\right]$. What is $\Omega_{A / k}$? We claim it is

$$
A \cdot d x_{1} \oplus \cdots \oplus A \cdot d x_{n}
$$

Let $M=A d x_{1} \oplus \cdots \oplus A d x_{n}$. The partial derivative $\partial_{i}: A \rightarrow A d x_{i}$ is a derivation, so $\delta=\sum \partial_{i}$ is a derivation $A \rightarrow M$.
Using the universal property, we get a unique A-module map ψ such that the diagram commutes.

Construction of the Kähler differentials

Let $A=k\left[x_{1}, \ldots, x_{n}\right]$. What is $\Omega_{A / k}$? We claim it is

$$
A \cdot d x_{1} \oplus \cdots \oplus A \cdot d x_{n}
$$

Let $M=A d x_{1} \oplus \cdots \oplus A d x_{n}$. The partial derivative $\partial_{i}: A \rightarrow A d x_{i}$ is a derivation, so $\delta=\sum \partial_{i}$ is a derivation $A \rightarrow M$.
Using the universal property, we get a unique A-module map ψ such that the diagram commutes.

Let $\Omega_{A / k} \cong \bigoplus A d f / \sim$, which was our first construction.

Construction of the Kähler differentials

$$
\underset{\delta \mid}{A \cdot d x_{1} \oplus \cdots \oplus A^{\ldots-\cdots} \cdot d x_{n}} \underset{\psi}{A} \oplus A \cdot d f / \sim
$$

Construction of the Kähler differentials

ψ is injective: If $\psi(d f)=0$, then $\delta(f)=0$, so $\partial_{i}(f)=0 d x_{i}$ for all i. Thus f is x_{i}-free, i.e., $f \in k$, so $d f=0$ in $\bigoplus A d f / \sim$.

Construction of the Kähler differentials

ψ is injective: If $\psi(d f)=0$, then $\delta(f)=0$, so $\partial_{i}(f)=0 d x_{i}$ for all i. Thus f is x_{i}-free, i.e., $f \in k$, so $d f=0$ in $\bigoplus A d f / \sim$. ψ is surjective: $A d x_{1} \oplus \cdots \oplus A d x_{n}$ has an A-basis $\left\{1 d x_{1}, \ldots, 1 d x_{n}\right\}$. The element $d x_{i} \in \bigoplus A d f / \sim$ satisfies

Construction of the Kähler differentials

ψ is injective: If $\psi(d f)=0$, then $\delta(f)=0$, so $\partial_{i}(f)=0 d x_{i}$ for all i. Thus f is x_{i}-free, i.e., $f \in k$, so $d f=0$ in $\bigoplus A d f / \sim$. ψ is surjective: $A d x_{1} \oplus \cdots \oplus A d x_{n}$ has an A-basis $\left\{1 d x_{1}, \ldots, 1 d x_{n}\right\}$. The element $d x_{i} \in \bigoplus A d f / \sim$ satisfies

$$
\psi\left(d x_{i}\right)=\delta\left(x_{i}\right)
$$

Construction of the Kähler differentials

ψ is injective: If $\psi(d f)=0$, then $\delta(f)=0$, so $\partial_{i}(f)=0 d x_{i}$ for all i. Thus f is x_{i}-free, i.e., $f \in k$, so $d f=0$ in $\bigoplus A d f / \sim$. ψ is surjective: $A d x_{1} \oplus \cdots \oplus A d x_{n}$ has an A-basis $\left\{1 d x_{1}, \ldots, 1 d x_{n}\right\}$. The element $d x_{i} \in \bigoplus A d f / \sim$ satisfies

$$
\begin{aligned}
\psi\left(d x_{i}\right) & =\delta\left(x_{i}\right) \\
& =\sum_{j=1}^{n} \partial_{j}\left(x_{i}\right)
\end{aligned}
$$

Construction of the Kähler differentials

ψ is injective: If $\psi(d f)=0$, then $\delta(f)=0$, so $\partial_{i}(f)=0 d x_{i}$ for all i. Thus f is x_{i}-free, i.e., $f \in k$, so $d f=0$ in $\bigoplus A d f / \sim$. ψ is surjective: $A d x_{1} \oplus \cdots \oplus A d x_{n}$ has an A-basis $\left\{1 d x_{1}, \ldots, 1 d x_{n}\right\}$. The element $d x_{i} \in \bigoplus A d f / \sim$ satisfies

$$
\begin{aligned}
\psi\left(d x_{i}\right) & =\delta\left(x_{i}\right) \\
& =\sum_{j=1}^{n} \partial_{j}\left(x_{i}\right) \\
& =1 \cdot d x_{i}
\end{aligned}
$$

Construction of the Kähler differentials

ψ is injective: If $\psi(d f)=0$, then $\delta(f)=0$, so $\partial_{i}(f)=0 d x_{i}$ for all i. Thus f is x_{i}-free, i.e., $f \in k$, so $d f=0$ in $\bigoplus A d f / \sim$. ψ is surjective: $A d x_{1} \oplus \cdots \oplus A d x_{n}$ has an A-basis $\left\{1 d x_{1}, \ldots, 1 d x_{n}\right\}$. The element $d x_{i} \in \bigoplus A d f / \sim$ satisfies

$$
\begin{aligned}
\psi\left(d x_{i}\right) & =\delta\left(x_{i}\right) \\
& =\sum_{j=1}^{n} \partial_{j}\left(x_{i}\right) \\
& =1 \cdot d x_{i},
\end{aligned}
$$

so $\left\{d x_{1}, \ldots, d x_{n}\right\} \subseteq \bigoplus A d f / \sim$ maps to the basis $\left\{1 d x_{1}, \ldots, 1 d x_{n}\right\}$ under ψ.

Construction of the Kähler differentials

 Another example (goal: to generalize)! Let $A=k[x, y] /\left(y-x^{2}\right)$. If $f \in A$, then we can represent
Construction of the Kähler differentials

Another example (goal: to generalize)! Let $A=k[x, y] /\left(y-x^{2}\right)$. If $f \in A$, then we can represent

$$
f=\sum_{i, j} c_{i j} x^{i} y^{j}
$$

Construction of the Kähler differentials

Another example (goal: to generalize)! Let $A=k[x, y] /\left(y-x^{2}\right)$. If $f \in A$, then we can represent

$$
f=\sum_{i, j} c_{i j} x^{i} y^{j}
$$

An explicit computation:

Construction of the Kähler differentials

Another example (goal: to generalize)! Let $A=k[x, y] /\left(y-x^{2}\right)$. If $f \in A$, then we can represent

$$
f=\sum_{i, j} c_{i j} x^{i} y^{j}
$$

An explicit computation:

$$
d f=\sum_{i, j} c_{i j} d\left(x^{i} y^{j}\right)
$$

Construction of the Kähler differentials

Another example (goal: to generalize)! Let $A=k[x, y] /\left(y-x^{2}\right)$. If $f \in A$, then we can represent

$$
f=\sum_{i, j} c_{i j} x^{i} y^{j}
$$

An explicit computation:

$$
d f=\sum_{i, j} c_{i j} d\left(x^{i} y^{j}\right)=\sum_{i, j} c_{i j}\left(d\left(x^{i}\right) y^{j}+x^{i} d\left(y^{j}\right)\right)
$$

Construction of the Kähler differentials

Another example (goal: to generalize)! Let $A=k[x, y] /\left(y-x^{2}\right)$. If $f \in A$, then we can represent

$$
f=\sum_{i, j} c_{i j} x^{i} y^{j}
$$

An explicit computation:

$$
\begin{aligned}
d f=\sum_{i, j} c_{i j} d\left(x^{i} y^{j}\right) & =\sum_{i, j} c_{i j}\left(d\left(x^{i}\right) y^{j}+x^{i} d\left(y^{j}\right)\right) \\
& =\sum_{i, j} c_{i j}\left(i x^{i-1} y^{j} d x+x^{i} j y^{j-1} d y\right)
\end{aligned}
$$

Construction of the Kähler differentials

Another example (goal: to generalize)! Let $A=k[x, y] /\left(y-x^{2}\right)$. If $f \in A$, then we can represent

$$
f=\sum_{i, j} c_{i j} x^{i} y^{j}
$$

An explicit computation:

$$
\begin{aligned}
d f=\sum_{i, j} c_{i j} d\left(x^{i} y^{j}\right) & =\sum_{i, j} c_{i j}\left(d\left(x^{i}\right) y^{j}+x^{i} d\left(y^{j}\right)\right) \\
& =\sum_{i, j} c_{i j}\left(i x^{i-1} y^{j} d x+x^{i} j y^{j-1} d y\right)
\end{aligned}
$$

So $\Omega_{A / k}$ is generated as an A-module by $d x$ and $d y$.

Construction of the Kähler differentials

Another example (goal: to generalize)! Let $A=k[x, y] /\left(y-x^{2}\right)$. If $f \in A$, then we can represent

$$
f=\sum_{i, j} c_{i j} x^{i} y^{j}
$$

An explicit computation:

$$
\begin{aligned}
d f=\sum_{i, j} c_{i j} d\left(x^{i} y^{j}\right) & =\sum_{i, j} c_{i j}\left(d\left(x^{i}\right) y^{j}+x^{i} d\left(y^{j}\right)\right) \\
& =\sum_{i, j} c_{i j}\left(i x^{i-1} y^{j} d x+x^{i} j y^{j-1} d y\right)
\end{aligned}
$$

So $\Omega_{A / k}$ is generated as an A-module by $d x$ and $d y$. Since $y-x^{2}=0$ in A, expect $d\left(y-x^{2}\right)=d y-2 x d x=0$ in $\Omega_{A / k}$.

Construction of the Kähler differentials

Another example (goal: to generalize)! Let $A=k[x, y] /\left(y-x^{2}\right)$. If $f \in A$, then we can represent

$$
f=\sum_{i, j} c_{i j} x^{i} y^{j} .
$$

An explicit computation:

$$
\begin{aligned}
d f=\sum_{i, j} c_{i j} d\left(x^{i} y^{j}\right) & =\sum_{i, j} c_{i j}\left(d\left(x^{i}\right) y^{j}+x^{i} d\left(y^{j}\right)\right) \\
& =\sum_{i, j} c_{i j}\left(i x^{i-1} y^{j} d x+x^{i} j y^{j-1} d y\right)
\end{aligned}
$$

So $\Omega_{A / k}$ is generated as an A-module by $d x$ and $d y$. Since $y-x^{2}=0$ in A, expect $d\left(y-x^{2}\right)=d y-2 x d x=0$ in $\Omega_{A / k}$. Indeed, one can check that

$$
\Omega_{A / k} \rightarrow A \cdot d x \oplus A \cdot d y \rightarrow A \cdot d x \oplus A \cdot d y /(d y-2 x d x)
$$

is an isomorphism.

Construction of the Kähler differentials

Another example (goal: to generalize)! Let $A=k[x, y] /\left(y-x^{2}\right)$. If $f \in A$, then we can represent

$$
f=\sum_{i, j} c_{i j} x^{i} y^{j} .
$$

An explicit computation:

$$
\begin{aligned}
d f=\sum_{i, j} c_{i j} d\left(x^{i} y^{j}\right) & =\sum_{i, j} c_{i j}\left(d\left(x^{i}\right) y^{j}+x^{i} d\left(y^{j}\right)\right) \\
& =\sum_{i, j} c_{i j}\left(i x^{i-1} y^{j} d x+x^{i} j y^{j-1} d y\right)
\end{aligned}
$$

So $\Omega_{A / k}$ is generated as an A-module by $d x$ and $d y$. Since $y-x^{2}=0$ in A, expect $d\left(y-x^{2}\right)=d y-2 x d x=0$ in $\Omega_{A / k}$. Indeed, one can check that

$$
\Omega_{A / k} \rightarrow A \cdot d x \oplus A \cdot d y \rightarrow A \cdot d x \oplus A \cdot d y /(d y-2 x d x)
$$

is an isomorphism. But that doesn't generalize.

The first fundamental exact sequence

The first fundamental exact sequence

Theorem. Let $k \rightarrow R \rightarrow S$ be ring maps. The following sequence of S-modules is exact.

$$
\Omega_{R / k} \otimes_{R} S \rightarrow \Omega_{S / k} \rightarrow \Omega_{S / R} \rightarrow 0
$$

The first fundamental exact sequence

Theorem. Let $k \rightarrow R \rightarrow S$ be ring maps. The following sequence of S-modules is exact.

$$
\Omega_{R / k} \otimes_{R} S \rightarrow \Omega_{S / k} \rightarrow \Omega_{S / R} \rightarrow 0
$$

Proof.

 [00RS].
The first fundamental exact sequence

Before we see $\# 2$, let's see an example (which motivates \#2).

The first fundamental exact sequence

Before we see \#2, let's see an example (which motivates \#2). Let $k \hookrightarrow k[x, y] \rightarrow k[x, y] /(f)=A$ be ring maps. By the FFES,

The first fundamental exact sequence

Before we see \#2, let's see an example (which motivates \#2). Let $k \hookrightarrow k[x, y] \rightarrow k[x, y] /(f)=A$ be ring maps. By the FFES,

$$
\Omega_{k[x, y] / k} \otimes_{k[x, y]} A \rightarrow \Omega_{A / k} \rightarrow \Omega_{A / k[x, y]} \rightarrow 0
$$

The first fundamental exact sequence

Before we see \#2, let's see an example (which motivates \#2). Let $k \hookrightarrow k[x, y] \rightarrow k[x, y] /(f)=A$ be ring maps. By the FFES,

$$
\Omega_{k[x, y] / k} \otimes_{k[x, y]} A \rightarrow \Omega_{A / k} \rightarrow \Omega_{A / k[x, y]} \rightarrow 0
$$

$k[x, y] \rightarrow A$, so $\Omega_{A / k[x, y]}=0$.

The first fundamental exact sequence

Before we see \#2, let's see an example (which motivates \#2). Let $k \hookrightarrow k[x, y] \rightarrow k[x, y] /(f)=A$ be ring maps. By the FFES,

$$
\Omega_{k[x, y] / k} \otimes_{k[x, y]} A \rightarrow \Omega_{A / k} \rightarrow 0 \rightarrow 0
$$

$k[x, y] \rightarrow A$, so $\Omega_{A / k[x, y]}=0$.

The first fundamental exact sequence

Before we see \#2, let's see an example (which motivates \#2). Let $k \hookrightarrow k[x, y] \rightarrow k[x, y] /(f)=A$ be ring maps. By the FFES,

$$
\Omega_{k[x, y] / k} \otimes_{k[x, y]} A \rightarrow \Omega_{A / k} \rightarrow 0 \rightarrow 0
$$

$k[x, y] \rightarrow A$, so $\Omega_{A / k[x, y]}=0$.
We also know $\Omega_{k[x, y] / k} \cong k[x, y] d x \oplus k[x, y] d y$.

The first fundamental exact sequence

Before we see \#2, let's see an example (which motivates \#2). Let $k \hookrightarrow k[x, y] \rightarrow k[x, y] /(f)=A$ be ring maps. By the FFES,

$$
(k[x, y] \cdot d x \oplus k[x, y] \cdot d y) \otimes_{k[x, y]} A \rightarrow \Omega_{A / k} \rightarrow 0 \rightarrow 0
$$

$k[x, y] \rightarrow A$, so $\Omega_{A / k[x, y]}=0$.
We also know $\Omega_{k[x, y] / k} \cong k[x, y] d x \oplus k[x, y] d y$.

The first fundamental exact sequence

Before we see \#2, let's see an example (which motivates \#2). Let $k \hookrightarrow k[x, y] \rightarrow k[x, y] /(f)=A$ be ring maps. By the FFES,

$$
(k[x, y] \cdot d x \oplus k[x, y] \cdot d y) \otimes_{k[x, y]} A \rightarrow \Omega_{A / k} \rightarrow 0 \rightarrow 0
$$

$k[x, y] \rightarrow A$, so $\Omega_{A / k[x, y]}=0$.
We also know $\Omega_{k[x, y] / k} \cong k[x, y] d x \oplus k[x, y] d y$.
Distribute and compute the tensor product base change.

The first fundamental exact sequence

Before we see \#2, let's see an example (which motivates \#2). Let $k \hookrightarrow k[x, y] \rightarrow k[x, y] /(f)=A$ be ring maps. By the FFES,

$$
A \cdot d x \oplus A \cdot d y \rightarrow \Omega_{A / k} \rightarrow 0 \rightarrow 0
$$

$k[x, y] \rightarrow A$, so $\Omega_{A / k[x, y]}=0$.
We also know $\Omega_{k[x, y] / k} \cong k[x, y] d x \oplus k[x, y] d y$.
Distribute and compute the tensor product base change.

The first fundamental exact sequence

Before we see \#2, let's see an example (which motivates \#2). Let $k \hookrightarrow k[x, y] \rightarrow k[x, y] /(f)=A$ be ring maps. By the FFES,

$$
A \cdot d x \oplus A \cdot d y \xrightarrow{\psi} \Omega_{A / k} \rightarrow 0 \rightarrow 0 .
$$

$k[x, y] \rightarrow A$, so $\Omega_{A / k[x, y]}=0$.
We also know $\Omega_{k[x, y] / k} \cong k[x, y] d x \oplus k[x, y] d y$.
Distribute and compute the tensor product base change.
Therefore $\Omega_{A / k}$ is a quotient of $A d x \oplus A d y$. If we knew the kernel of ψ, we'd be happy.

The first fundamental exact sequence

Before we see \#2, let's see an example (which motivates \#2). Let $k \hookrightarrow k[x, y] \rightarrow k[x, y] /(f)=A$ be ring maps. By the FFES,

$$
A \cdot d x \oplus A \cdot d y \xrightarrow{\psi} \Omega_{A / k} \rightarrow 0 \rightarrow 0 .
$$

$k[x, y] \rightarrow A$, so $\Omega_{A / k[x, y]}=0$.
We also know $\Omega_{k[x, y] / k} \cong k[x, y] d x \oplus k[x, y] d y$.
Distribute and compute the tensor product base change.
Therefore $\Omega_{A / k}$ is a quotient of $A d x \oplus A d y$. If we knew the kernel of ψ, we'd be happy.
Since $f=0$ in A,

The first fundamental exact sequence

Before we see $\# 2$, let's see an example (which motivates \#2). Let $k \hookrightarrow k[x, y] \rightarrow k[x, y] /(f)=A$ be ring maps. By the FFES,

$$
\Omega_{k[x, y] / k} \otimes_{k[x, y]} A \xrightarrow{\psi} \Omega_{A / k} \rightarrow 0 \rightarrow 0 .
$$

$k[x, y] \rightarrow A$, so $\Omega_{A / k[x, y]}=0$.
We also know $\Omega_{k[x, y] / k} \cong k[x, y] d x \oplus k[x, y] d y$.
Distribute and compute the tensor product base change.
Therefore $\Omega_{A / k}$ is a quotient of $A d x \oplus A d y$. If we knew the kernel of ψ, we'd be happy.
Since $f=0$ in $A, d f \otimes 1 \in \Omega_{k[x, y] / k} \otimes A$ maps to 0 under ψ. So we might hope to define the following map.

The first fundamental exact sequence

Before we see $\# 2$, let's see an example (which motivates \#2). Let $k \hookrightarrow k[x, y] \rightarrow k[x, y] /(f)=A$ be ring maps. By the FFES,

$$
(f) \rightarrow \Omega_{k[x, y] / k} \otimes_{k[x, y]} A \xrightarrow{\psi} \Omega_{A / k} \rightarrow 0 \rightarrow 0 .
$$

$k[x, y] \rightarrow A$, so $\Omega_{A / k[x, y]}=0$.
We also know $\Omega_{k[x, y] / k} \cong k[x, y] d x \oplus k[x, y] d y$.
Distribute and compute the tensor product base change.
Therefore $\Omega_{A / k}$ is a quotient of $A d x \oplus A d y$. If we knew the kernel of ψ, we'd be happy.
Since $f=0$ in $A, d f \otimes 1 \in \Omega_{k[x, y] / k} \otimes A$ maps to 0 under ψ. So we might hope to define the following map.

The first fundamental exact sequence

Before we see $\# 2$, let's see an example (which motivates \#2). Let $k \hookrightarrow k[x, y] \rightarrow k[x, y] /(f)=A$ be ring maps. By the FFES,

$$
(f) \rightarrow \Omega_{k[x, y] / k} \otimes_{k[x, y]} A \xrightarrow{\psi} \Omega_{A / k} \rightarrow 0 \rightarrow 0 .
$$

$k[x, y] \rightarrow A$, so $\Omega_{A / k[x, y]}=0$.
We also know $\Omega_{k[x, y] / k} \cong k[x, y] d x \oplus k[x, y] d y$.
Distribute and compute the tensor product base change.
Therefore $\Omega_{A / k}$ is a quotient of $A d x \oplus A d y$. If we knew the kernel of ψ, we'd be happy.
Since $f=0$ in $A, d f \otimes 1 \in \Omega_{k[x, y] / k} \otimes A$ maps to 0 under ψ. So we might hope to define the following map.
But (f) isn't an A-module, it's a $k[x, y]$-module. So we base change to A.

The first fundamental exact sequence

Before we see $\# 2$, let's see an example (which motivates \#2). Let $k \hookrightarrow k[x, y] \rightarrow k[x, y] /(f)=A$ be ring maps. By the FFES,

$$
(f) \otimes_{k[x, y]} A \rightarrow \Omega_{k[x, y] / k} \otimes_{k[x, y]} A \xrightarrow{\psi} \Omega_{A / k} \rightarrow 0 \rightarrow 0 .
$$

$k[x, y] \rightarrow A$, so $\Omega_{A / k[x, y]}=0$.
We also know $\Omega_{k[x, y] / k} \cong k[x, y] d x \oplus k[x, y] d y$.
Distribute and compute the tensor product base change.
Therefore $\Omega_{A / k}$ is a quotient of $A d x \oplus A d y$. If we knew the kernel of ψ, we'd be happy.
Since $f=0$ in $A, d f \otimes 1 \in \Omega_{k[x, y] / k} \otimes A$ maps to 0 under ψ. So we might hope to define the following map.
But (f) isn't an A-module, it's a $k[x, y]$-module. So we base change to A.

The first fundamental exact sequence

Before we see $\# 2$, let's see an example (which motivates \#2). Let $k \hookrightarrow k[x, y] \rightarrow k[x, y] /(f)=A$ be ring maps. By the FFES,

$$
(f) /\left(f^{2}\right) \rightarrow \Omega_{k[x, y] / k} \otimes_{k[x, y]} A \xrightarrow{\psi} \Omega_{A / k} \rightarrow 0 \rightarrow 0 .
$$

$k[x, y] \rightarrow A$, so $\Omega_{A / k[x, y]}=0$.
We also know $\Omega_{k[x, y] / k} \cong k[x, y] d x \oplus k[x, y] d y$.
Distribute and compute the tensor product base change. Therefore $\Omega_{A / k}$ is a quotient of $A d x \oplus A d y$. If we knew the kernel of ψ, we'd be happy.
Since $f=0$ in $A, d f \otimes 1 \in \Omega_{k[x, y] / k} \otimes A$ maps to 0 under ψ. So we might hope to define the following map.
But (f) isn't an A-module, it's a $k[x, y]$-module. So we base change to A.

The first fundamental exact sequence

Before we see $\# 2$, let's see an example (which motivates \#2). Let $k \hookrightarrow k[x, y] \rightarrow k[x, y] /(f)=A$ be ring maps. By the FFES,

$$
(f) /\left(f^{2}\right) \rightarrow \Omega_{k[x, y] / k} \otimes_{k[x, y]} A \xrightarrow{\psi} \Omega_{A / k} \rightarrow 0 \rightarrow 0 .
$$

$k[x, y] \rightarrow A$, so $\Omega_{A / k[x, y]}=0$.
We also know $\Omega_{k[x, y] / k} \cong k[x, y] d x \oplus k[x, y] d y$.
Distribute and compute the tensor product base change. Therefore $\Omega_{A / k}$ is a quotient of $A d x \oplus A d y$. If we knew the kernel of ψ, we'd be happy.
Since $f=0$ in $A, d f \otimes 1 \in \Omega_{k[x, y] / k} \otimes A$ maps to 0 under ψ. So we might hope to define the following map.
But (f) isn't an A-module, it's a $k[x, y]$-module. So we base change to A.
Now the above sequence is exact.

The first fundamental exact sequence

$$
(f) /\left(f^{2}\right) \rightarrow \Omega_{k[x, y] / k} \otimes_{k[x, y]} A \rightarrow \Omega_{A / k} \rightarrow 0
$$

What happens when $A \neq k[x, y] /(f)$? E.g., $k[x, y] /\left(f_{1}, \ldots, f_{s}\right)$? Or, more generally, ring maps $k \rightarrow R \rightarrow S$? The FFES gives us

The first fundamental exact sequence

$$
(f) /\left(f^{2}\right) \rightarrow \Omega_{k[x, y] / k} \otimes_{k[x, y]} A \rightarrow \Omega_{A / k} \rightarrow 0
$$

What happens when $A \neq k[x, y] /(f)$? E.g., $k[x, y] /\left(f_{1}, \ldots, f_{s}\right)$? Or, more generally, ring maps $k \rightarrow R \rightarrow S$? The FFES gives us

$$
\Omega_{R / k} \otimes_{R} S \rightarrow \Omega_{S / k} \rightarrow \Omega_{S / R} \rightarrow 0
$$

The first fundamental exact sequence

$$
(f) /\left(f^{2}\right) \rightarrow \Omega_{k[x, y] / k} \otimes_{k[x, y]} A \rightarrow \Omega_{A / k} \rightarrow 0
$$

What happens when $A \neq k[x, y] /(f)$? E.g., $k[x, y] /\left(f_{1}, \ldots, f_{s}\right)$? Or, more generally, ring maps $k \rightarrow R \rightarrow S$? The FFES gives us

$$
\Omega_{R / k} \otimes_{R} S \rightarrow \Omega_{S / k} \rightarrow 0
$$

The first fundamental exact sequence

$$
(f) /\left(f^{2}\right) \rightarrow \Omega_{k[x, y] / k} \otimes_{k[x, y]} A \rightarrow \Omega_{A / k} \rightarrow 0
$$

What happens when $A \neq k[x, y] /(f)$? E.g., $k[x, y] /\left(f_{1}, \ldots, f_{s}\right)$? Or, more generally, ring maps $k \rightarrow R \rightarrow S$? The FFES gives us

$$
\Omega_{R / k} \otimes_{R} S \rightarrow \Omega_{S / k} \rightarrow 0
$$

Repeat the same argument as before. We get:

The second fundamental exact sequence

$$
(f) /\left(f^{2}\right) \rightarrow \Omega_{k[x, y] / k} \otimes_{k[x, y]} A \rightarrow \Omega_{A / k} \rightarrow 0
$$

What happens when $A \neq k[x, y] /(f)$? E.g., $k[x, y] /\left(f_{1}, \ldots, f_{s}\right)$? Or, more generally, ring maps $k \rightarrow R \rightarrow S$? The FFES gives us

$$
\Omega_{R / k} \otimes_{R} S \rightarrow \Omega_{S / k} \rightarrow 0
$$

Repeat the same argument as before. We get:

The second fundamental exact sequence

$$
(f) /\left(f^{2}\right) \rightarrow \Omega_{k[x, y] / k} \otimes_{k[x, y]} A \rightarrow \Omega_{A / k} \rightarrow 0
$$

What happens when $A \neq k[x, y] /(f)$? E.g., $k[x, y] /\left(f_{1}, \ldots, f_{s}\right)$?
Or, more generally, ring maps $k \rightarrow R \rightarrow S$? The FFES gives us

$$
\Omega_{R / k} \otimes_{R} S \rightarrow \Omega_{S / k} \rightarrow 0
$$

Repeat the same argument as before. We get:
Theorem. Let $R \rightarrow S$ be a map of k-algs. Let $I=\operatorname{ker}(R \rightarrow S)$.
The following sequence of S-modules is exact.

$$
I / I^{2} \xrightarrow{f \mapsto d f \otimes 1} \Omega_{R / k} \otimes_{R} S \rightarrow \Omega_{S / k} \rightarrow 0
$$

The second fundamental exact sequence

$$
(f) /\left(f^{2}\right) \rightarrow \Omega_{k[x, y] / k} \otimes_{k[x, y]} A \rightarrow \Omega_{A / k} \rightarrow 0
$$

What happens when $A \neq k[x, y] /(f)$? E.g., $k[x, y] /\left(f_{1}, \ldots, f_{s}\right)$? Or, more generally, ring maps $k \rightarrow R \rightarrow S$? The FFES gives us

$$
\Omega_{R / k} \otimes_{R} S \rightarrow \Omega_{S / k} \rightarrow 0
$$

Repeat the same argument as before. We get:
Theorem. Let $R \rightarrow S$ be a map of k-algs. Let $I=\operatorname{ker}(R \rightarrow S)$.
The following sequence of S-modules is exact.

$$
I / I^{2} \xrightarrow{f \mapsto d f \otimes 1} \Omega_{R / k} \otimes_{R} S \rightarrow \Omega_{S / k} \rightarrow 0
$$

Proof.

 [00RU].
The second fundamental exact sequence

$$
I / I^{2} \xrightarrow{f \mapsto d f \otimes 1} \Omega_{R / k} \otimes_{R} S \rightarrow \Omega_{S / k} \rightarrow 0
$$

The second fundamental exact sequence

$$
I / I^{2} \xrightarrow{f \mapsto d f \otimes 1} \Omega_{R / k} \otimes_{R} S \rightarrow \Omega_{S / k} \rightarrow 0
$$

Corollary. If $A \cong k\left[x_{1}, \ldots, x_{n}\right] /\left(f_{1}, \ldots, f_{s}\right)$, then

$$
\Omega_{A / k} \cong \operatorname{coker}\left[\frac{\partial f_{i}}{\partial x_{j}}\right] .
$$

The second fundamental exact sequence

$$
I / I^{2} \xrightarrow{f \mapsto d f \otimes 1} \Omega_{R / k} \otimes_{R} S \rightarrow \Omega_{S / k} \rightarrow 0
$$

Corollary. If $A \cong k\left[x_{1}, \ldots, x_{n}\right] /\left(f_{1}, \ldots, f_{s}\right)$, then

$$
\Omega_{A / k} \cong \operatorname{coker}\left[\frac{\partial f_{i}}{\partial x_{j}}\right] .
$$

Proof.

Let $R=k\left[x_{1}, \ldots, x_{n}\right], S=A$, and observe that

$$
d f_{i}=\sum_{j=1}^{n} \frac{\partial f_{i}}{\partial x_{j}} d x_{j}
$$

The second fundamental exact sequence

Examples are now easy:

The second fundamental exact sequence

Examples are now easy:
(1) If $A=k[x, y] /\left(x^{2}-y^{3}\right)$, then

$$
\Omega_{A / k} \cong \frac{A d x \oplus A d y}{\left(2 x d x-3 y^{2} d y\right)}
$$

The second fundamental exact sequence

Examples are now easy:
(1) If $A=k[x, y] /\left(x^{2}-y^{3}\right)$, then

$$
\Omega_{A / k} \cong \frac{A d x \oplus A d y}{\left(2 x d x-3 y^{2} d y\right)}
$$

(2) If $A^{\prime}=k[x, y, z] /(x y, x z, y z)$, then

$$
\Omega_{A^{\prime} / k} \cong \frac{A^{\prime} d x \oplus A^{\prime} d y \oplus A^{\prime} d z}{(x d y+y d x, x d z+z d x, y d z+z d y)}
$$

The second fundamental exact sequence

Examples are now easy:
(1) If $A=k[x, y] /\left(x^{2}-y^{3}\right)$, then

$$
\Omega_{A / k} \cong \frac{A d x \oplus A d y}{\left(2 x d x-3 y^{2} d y\right)}
$$

(2) If $A^{\prime}=k[x, y, z] /(x y, x z, y z)$, then

$$
\Omega_{A^{\prime} / k} \cong \frac{A^{\prime} d x \oplus A^{\prime} d y \oplus A^{\prime} d z}{(x d y+y d x, x d z+z d x, y d z+z d y)}
$$

3 If $A^{\prime \prime}=k\left[x_{1}, \ldots, x_{n}\right] /\left(f_{1}, \ldots, f_{s}\right)$, then

$$
\Omega_{A^{\prime \prime} / k} \cong \frac{A^{\prime \prime} d x_{1} \oplus \cdots A^{\prime \prime} d x_{n}}{\left(d f_{1}, \ldots, d f_{s}\right)}
$$

The second fundamental exact sequence

Geometry can be made more explicit:

The second fundamental exact sequence

Geometry can be made more explicit:
Suppose (R, \mathfrak{m}, k) is a local ring, so it can be understood as in correspondence with a point x of some LRS X. Using the map of k-algs $k \rightarrow R \rightarrow R / \mathfrak{m}=k$, we get

$$
\mathfrak{m} / \mathfrak{m}^{2} \xrightarrow{\varphi} \Omega_{R / k} \otimes_{R} k \rightarrow \Omega_{k / k}=0
$$

The second fundamental exact sequence

Geometry can be made more explicit:
Suppose (R, \mathfrak{m}, k) is a local ring, so it can be understood as in correspondence with a point x of some LRS X. Using the map of k-algs $k \rightarrow R \rightarrow R / \mathfrak{m}=k$, we get

$$
\mathfrak{m} / \mathfrak{m}^{2} \xrightarrow{\varphi} \Omega_{R / k} \otimes_{R} k \rightarrow \Omega_{k / k}=0
$$

But φ is injective too! To see this, we'll use the fact that $\operatorname{Hom}(-, k)$ is left exact, and check that

$$
\operatorname{Hom}_{k}\left(\Omega_{R / k} \otimes_{R} k, k\right) \xrightarrow{\varphi_{*}} \operatorname{Hom}_{k}\left(\mathfrak{m} / \mathfrak{m}^{2}, k\right)
$$

is surjective.

The second fundamental exact sequence

$$
\mathfrak{m} / \mathfrak{m}^{2} \xrightarrow{\varphi} \Omega_{R / k} \otimes_{R} k \rightarrow 0
$$

The second fundamental exact sequence

$$
\begin{array}{r}
\mathfrak{m} / \mathfrak{m}^{2} \xrightarrow{\varphi} \Omega_{R / k} \otimes_{R} k \rightarrow 0 \\
0 \rightarrow \operatorname{Hom}_{k}\left(\Omega_{R / k} \otimes_{R} k, k\right) \xrightarrow{\varphi_{*}} \operatorname{Hom}_{k}\left(\mathfrak{m} / \mathfrak{m}^{2}, k\right)
\end{array}
$$

The second fundamental exact sequence

$$
\begin{array}{r}
\mathfrak{m} / \mathfrak{m}^{2} \xrightarrow{\varphi} \Omega_{R / k} \otimes_{R} k \rightarrow 0 \\
0 \rightarrow \operatorname{Hom}_{k}\left(\Omega_{R / k} \otimes_{R} k, k\right) \xrightarrow{\varphi_{*}} \operatorname{Hom}_{k}\left(\mathfrak{m} / \mathfrak{m}^{2}, k\right)
\end{array}
$$

Why $\operatorname{Hom}(-, k) ?!?!$

The second fundamental exact sequence

$$
\begin{array}{r}
\mathfrak{m} / \mathfrak{m}^{2} \xrightarrow{\varphi} \Omega_{R / k} \otimes_{R} k \rightarrow 0 \\
0 \rightarrow \operatorname{Hom}_{k}\left(\Omega_{R / k} \otimes_{R} k, k\right) \xrightarrow{\varphi_{*}} \operatorname{Hom}_{k}\left(\mathfrak{m} / \mathfrak{m}^{2}, k\right)
\end{array}
$$

Why $\operatorname{Hom}(-, k)$?!?! Because $\mathfrak{m} / \mathfrak{m}^{2}$ is the Zariski cotangent space at x, and its k-vector space dual $\operatorname{Hom}_{k}\left(\mathfrak{m} / \mathfrak{m}^{2}, k\right)$ is the tangent space, so it's reasonable to look at.

The second fundamental exact sequence

$$
\begin{array}{r}
\mathfrak{m} / \mathfrak{m}^{2} \xrightarrow{\varphi} \Omega_{R / k} \otimes_{R} k \rightarrow 0 \\
0 \rightarrow \operatorname{Hom}_{k}\left(\Omega_{R / k} \otimes_{R} k, k\right) \xrightarrow{\varphi_{*}} \operatorname{Hom}_{k}\left(\mathfrak{m} / \mathfrak{m}^{2}, k\right)
\end{array}
$$

Why $\operatorname{Hom}(-, k)$?!?! Because $\mathfrak{m} / \mathfrak{m}^{2}$ is the Zariski cotangent space at x, and its k-vector space dual $\operatorname{Hom}_{k}\left(\mathfrak{m} / \mathfrak{m}^{2}, k\right)$ is the tangent space, so it's reasonable to look at.
Idea: To show φ_{*} is surjective, we show any k-linear morphism $\psi: \mathfrak{m} / \mathfrak{m}^{2} \rightarrow k$ lifts to $\Omega_{R / k} \otimes_{R} k \rightarrow k$. Define a map $R \rightarrow k$ by $r=a+b$ for $a \in k$ and $b \in \mathfrak{m}$; check that $r \mapsto \psi(b)$ is a derivation. Then show φ_{*} is surjective via universal property of $\Omega_{R / k}$.

The second fundamental exact sequence

$$
\begin{array}{r}
\mathfrak{m} / \mathfrak{m}^{2} \xrightarrow{\varphi} \Omega_{R / k} \otimes_{R} k \rightarrow 0 \\
0 \rightarrow \operatorname{Hom}_{k}\left(\Omega_{R / k} \otimes_{R} k, k\right) \xrightarrow{\varphi_{*}} \operatorname{Hom}_{k}\left(\mathfrak{m} / \mathfrak{m}^{2}, k\right)
\end{array}
$$

Why $\operatorname{Hom}(-, k)$?!?! Because $\mathfrak{m} / \mathfrak{m}^{2}$ is the Zariski cotangent space at x, and its k-vector space dual $\operatorname{Hom}_{k}\left(\mathfrak{m} / \mathfrak{m}^{2}, k\right)$ is the tangent space, so it's reasonable to look at.
Idea: To show φ_{*} is surjective, we show any k-linear morphism $\psi: \mathfrak{m} / \mathfrak{m}^{2} \rightarrow k$ lifts to $\Omega_{R / k} \otimes_{R} k \rightarrow k$. Define a map $R \rightarrow k$ by $r=a+b$ for $a \in k$ and $b \in \mathfrak{m}$; check that $r \mapsto \psi(b)$ is a derivation. Then show φ_{*} is surjective via universal property of $\Omega_{R / k}$. So Kähler differentials tell us geometry! $\Omega_{R / k} \otimes_{R} k \cong \mathfrak{m} / \mathfrak{m}^{2}$ is the cotangent space.

Where do you go from here?

Where do you go from here?

$\Omega_{A / k}$ is differentiation in module form. From last year's CARES: $J^{1} A$ is differentiation in k-algebra form. One might wonder: is there a connection?

Where do you go from here?

$\Omega_{A / k}$ is differentiation in module form. From last year's CARES: $J^{1} A$ is differentiation in k-algebra form. One might wonder: is there a connection? Yes! And it's exactly what you hope. The functor Sym : $\mathbf{M o d}_{k} \rightarrow \mathbf{A l g}_{k}$ is the natural way to take a module to an algebra. And indeed,

$$
J^{1} A \cong \operatorname{Sym} \Omega_{A / k}
$$

Where do you go from here?

You can also build out differential forms à la Calculus 3 in the natural way. Let $\Omega_{A / k}^{p}$ be the p th exterior power of $\Omega_{A / k}$ in the category of A-modules.

Where do you go from here?

You can also build out differential forms à la Calculus 3 in the natural way. Let $\Omega_{A / k}^{p}$ be the p th exterior power of $\Omega_{A / k}$ in the category of A-modules.

The differential $d: \Omega_{A / k}^{p} \rightarrow \Omega_{A / k}^{p+1}$ satisfies $d^{2}=0$ and there is a multiplicative map $\Omega_{A / k}^{p} \otimes_{A} \Omega_{A / k}^{q} \rightarrow \Omega_{A / k}^{p+q}$, so we get a differential graded algebra / cochain complex $\Omega_{A / k}^{\bullet}$.

Where do you go from here?

You can also build out differential forms à la Calculus 3 in the natural way. Let $\Omega_{A / k}^{p}$ be the p th exterior power of $\Omega_{A / k}$ in the category of A-modules.

The differential $d: \Omega_{A / k}^{p} \rightarrow \Omega_{A / k}^{p+1}$ satisfies $d^{2}=0$ and there is a multiplicative map $\Omega_{A / k}^{p} \otimes_{A} \Omega_{A / k}^{q} \rightarrow \Omega_{A / k}^{p+q}$, so we get a differential graded algebra / cochain complex $\Omega_{A / k}^{\bullet}$.

Taking cohomology gives us de Rham cohomology

$$
h^{i}\left(\Omega_{A / k}^{\bullet}\right):=H_{d R}^{i}(A / k)
$$

Where do you go from here?

You can also build out differential forms à la Calculus 3 in the natural way. Let $\Omega_{A / k}^{p}$ be the p th exterior power of $\Omega_{A / k}$ in the category of A-modules.

The differential $d: \Omega_{A / k}^{p} \rightarrow \Omega_{A / k}^{p+1}$ satisfies $d^{2}=0$ and there is a multiplicative map $\Omega_{A / k}^{p} \otimes_{A} \Omega_{A / k}^{q} \rightarrow \Omega_{A / k}^{p+q}$, so we get a differential graded algebra / cochain complex $\Omega_{A / k}^{\bullet}$.

Taking cohomology gives us de Rham cohomology

$$
h^{i}\left(\Omega_{A / k}^{\bullet}\right):=H_{d R}^{i}(A / k)
$$

Connect this to Duncan's 15 Sept talk about the Koszul complex and Čech / sheaf cohomology!

Where do you go from here?

Homological algebra and derived functors: we have two sequences which are exact on the right:

$$
\begin{aligned}
\# 1: k \rightarrow R \rightarrow S & \Rightarrow \Omega_{R / k} \otimes_{R} S \rightarrow \Omega_{S / k} \rightarrow \Omega_{S / R} \rightarrow 0 \\
\# 2: k \rightarrow R \xrightarrow{\psi} S & \Rightarrow \operatorname{ker} \psi / \operatorname{ker} \psi^{2} \rightarrow \Omega_{R / k} \otimes_{R} S \rightarrow \Omega_{S / k} \rightarrow 0
\end{aligned}
$$

Where do you go from here?

Homological algebra and derived functors: we have two sequences which are exact on the right:

$$
\begin{aligned}
& \# 1: k \rightarrow R \rightarrow S \Rightarrow \Omega_{R / k} \otimes_{R} S \rightarrow \Omega_{S / k} \rightarrow \Omega_{S / R} \rightarrow 0 \\
& \# 2: k \rightarrow R \xrightarrow{\psi} S \Rightarrow \frac{\operatorname{ker} \psi / \operatorname{ker} \psi^{2} \rightarrow \Omega_{R / k} \otimes_{R} S \rightarrow \Omega_{S / k} \rightarrow 0}{}
\end{aligned}
$$

You might want to extend to long exact sequences. This is kinda funky since $\mathbf{A l g}_{k}$ is not an abelian category. But it can be done homotopically. You get something called the cotangent complex $\mathbf{L}_{A / k}$.

Thank you!

Exact sequences. The Stacks project https://stacks.math. columbia.edu Tags: [00RS] [00RU]

Jet spaces. Jet schemes and singularities, Lawrence Ein \& Mircea Mustaţă Ex 2.5

Homotopy and $\mathbf{L}_{A / k}$. An introduction to homological algebra, Charles Weibel $\S 8.8$.
DAG IV: Deformation Theory, Jacob Lurie

