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Why?

Let’s think about differentiation the way your calculus 1 students∗

think about differentiation:

Let f, g ∈ R[x]. To take a derivative Dx[−] is to know the fol-
lowing rules:

1 Dx[c] = 0 if c ∈ R

2 Dx[xn] = nxn−1

3 Dx[f + g] = Dx[f ] +Dx[g]

4 Dx[fg] = Dx[f ]g + fDx[g]

5 etc.

As algebraists, this is formal symbol moving, not ε-neighborhoods.
(But will a geometric picture remain?)
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Derivations

Definition. Let k be a ring. Let A be an k-algebra (i.e., there is
a structure map ϕ : k → A). Let M be an A-module. A k-linear
derivation of A with coefficients in M is a homomorphism
of abelian groups δ : A→M such that

1 δϕ : k →M is the zero map

2 δ satisfies the Leibniz rule: for all f, g ∈ A,

δ(fg) = δ(f)g + fδ(g).

This is some of the cal 1 rules... sorta. Is it enough?
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Derivations

Let f, g ∈ A.

1 Sum Rule. δ(f + g) = δ(f) + δ(g), since δ is a
homomorphism of abelian groups.

2 Power Rule. Let n = 2.

δ(f2) = δ(f · f) = δ(f)f + fδ(f)

= 2fδ(f)

Suppose the power rule holds for n = k − 1.

δ(fk) = δ(f · fk−1) = δ(f)fk−1 + fδ(fk−1)

= δ(f)fk−1 + f(k − 1)fk−2δ(f)

= δ(f)fk−1 + (k − 1)fk−1δ(f)

= kfk−1δ(f)
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Derivations
3 Constant Rule.

What are constants? In the cal 1
example, the constants are c ∈ R, and polynomials live in
R[x]. Since R[x] is a R-algebra, R plays the role of k and
R[x] is A, and ϕ : R→ R[x] is the natural map. Even
outside the setting of polynomial rings, elements in
ϕ(k) ⊆ A are still considered constants. Let c ∈ k.

δ(ϕ(c)) = δϕ(c) = 0.

4 Constant Multiple Rule.

δ(ϕ(c) · f) = δ(ϕ(c))f + ϕ(c)δ(f)

= ϕ(c)δ(f).

In almost all contexts we will care about, ϕ : k → A is
injective, so we will typically write c for ϕ(c), and then
δ(cf) = cδ(f).
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Derivations

Denote the set of all k-linear derivations δ : A→M by

Derk(A;M).

By the “Constant Multiple Rule,” δ is a k-module homomor-
phism, so Derk(A;M) ⊆ Homk(A,M).

Not only that, but Derk(A;M) is an A-submodule via the action
(f · δ)(g) = fδ(g). We can add, subtract, and scale derivations.
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Definition of the Kähler differentials

Definition. The module of Kähler differentials of A over
k, ΩA/k, along with the universal derivation d : A → ΩA/k,
satisfy the following universal property.

Let δ : A → M be an k-linear derivation. There exists a unique
A-module homomorphism ΩA/k → M such that the following
diagram commutes.

A ΩA/k

M

δ

d

∃!

That is, there is an isomorphism of A-modules

HomA(ΩA/k,M) ∼= Derk(A;M)

given by composition with the universal derivation d : A→ ΩA/k.
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That is, there is an isomorphism of A-modules

HomA(ΩA/k,M) ∼= Derk(A;M)

given by composition with the universal derivation d : A→ ΩA/k.
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Definition of the Kähler differentials

We should always have universal property concerns!

A super basic exercise: ΩA/k = 0 when ϕ : k � A.
ϕ(k) = A so since δϕ = 0, δ : A→M is 0.

HomA(ΩA/k,M) ∼= Derk(A;M) = 0
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Construction of the Kähler differentials

Here’s the easiest way to build ΩA/k. Let

F =
⊕
f∈A

A · df.

Let d : A→ F be d(f) = df . Define

K = F�∼

where the relations are

• d(f + g) = df + dg,

• d(fg) = df · g + f · dg,

• dϕ(c) = 0.
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Construction of the Kähler differentials

Easy exercise: by construction, K along with the map d : A→ K
satisfies the universal property of ΩA/k, d.

Idea: this is the formal symbol moving of calculus 1 students.
Building K amounts to defining exactly the relations needed,
and no more, that guarantee d : A→ K is a derivation.

But this shouldn’t necessarily sit well with us: where is the ge-
ometry?
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Construction of the Kähler differentials

Here’s the second easiest way to build ΩA/k. Let

µ : A⊗k A→ A

be µ(f ⊗ g) = fg.

Let I = kerµ. Let

K ′ = I�I2.

Let d : A→ K ′ be defined by d(f) = 1⊗ f − f ⊗ 1.
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Construction of the Kähler differentials

Medium exercise: by construction, K ′ along with the morphism
d : A→ K ′ satisfies the universal property of ΩA/k, d.

Algebraic idea: the differential hints that it’s ultimately the same
algebraic relations, since d forces the Leibniz rule.

But why I/I2? There’s geometry here!
Thinking in terms of elements of a ring as functions, the mod-
ule I/I2 amounts to functions which vanish modulo vanishing to
second order.
You can think: take a Taylor series and truncate it to get the
first order differentiation. We’ll see more geometry later!
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Construction of the Kähler differentials

Let A = k[x1, . . . , xn]. What is ΩA/k? We claim it is

A · dx1 ⊕ · · · ⊕A · dxn.

Let M = Adx1⊕· · ·⊕Adxn. The partial derivative ∂i : A→ Adxi
is a derivation, so δ =

∑
∂i is a derivation A→M .

Using the universal property, we get a unique A-module map ψ
such that the diagram commutes.

A ΩA/k

A · dx1 ⊕ · · · ⊕A · dxn

δ

d

ψ

Let ΩA/k
∼=
⊕
Adf/ ∼, which was our first construction.
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Construction of the Kähler differentials

A
⊕
A · df�∼

A · dx1 ⊕ · · · ⊕A · dxn

δ

d

ψ

ψ is injective: If ψ(df) = 0, then δ(f) = 0, so ∂i(f) = 0dxi for
all i. Thus f is xi-free, i.e., f ∈ k, so df = 0 in

⊕
Adf/ ∼.

ψ is surjective: Adx1⊕· · ·⊕Adxn has anA-basis {1dx1, . . . , 1dxn}.
The element dxi ∈

⊕
Adf/ ∼ satisfies

ψ (dxi) = δ (xi)

=

n∑
j=1

∂j (xi)

= 1 · dxi,

so {dx1, . . . , dxn} ⊆
⊕
Adf/ ∼maps to the basis {1dx1, . . . , 1dxn}

under ψ.
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Construction of the Kähler differentials
Another example (goal: to generalize)! Let A = k[x, y]/(y− x2).
If f ∈ A, then we can represent

f =
∑
i,j

cijx
iyj .

An explicit computation:

df =
∑
i,j

cijd
(
xiyj

)
=
∑
i,j

cij
(
d
(
xi
)
yj + xid

(
yj
))

=
∑
i,j

cij
(
ixi−1yjdx+ xijyj−1dy

)
So ΩA/k is generated as an A-module by dx and dy.
Since y−x2 = 0 in A, expect d(y−x2) = dy−2xdx = 0 in ΩA/k.
Indeed, one can check that

ΩA/k → A · dx⊕A · dy � A · dx⊕A · dy�(dy − 2xdx)

is an isomorphism. But that doesn’t generalize...
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∑
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Since y−x2 = 0 in A, expect d(y−x2) = dy−2xdx = 0 in ΩA/k.

Indeed, one can check that
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The first fundamental exact sequence

Theorem. Let k → R → S be ring maps. The following se-
quence of S-modules is exact.

ΩR/k ⊗R S → ΩS/k → ΩS/R → 0

Proof.

[00RS].
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The first fundamental exact sequence

Before we see #2, let’s see an example (which motivates #2).

Let k ↪→ k[x, y] � k[x, y]/(f) = A be ring maps. By the FFES,

ΩA/k →→ 0.

k[x, y] � A, so ΩA/k[x,y] = 0.
We also know Ωk[x,y]/k

∼= k[x, y]dx⊕ k[x, y]dy.
Distribute and compute the tensor product base change.
Therefore ΩA/k is a quotient of Adx⊕Ady. If we knew the kernel
of ψ, we’d be happy.
Since f = 0 in A, df ⊗ 1 ∈ Ωk[x,y]/k ⊗ A maps to 0 under ψ. So
we might hope to define the following map.
But (f) isn’t an A-module, it’s a k[x, y]-module. So we base
change to A.
Now the above sequence is exact.
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The first fundamental exact sequence

(f)�(f2)→ Ωk[x,y]/k ⊗k[x,y] A→ ΩA/k → 0

What happens when A 6= k[x, y]/(f)? E.g., k[x, y]/(f1, . . . , fs)?
Or, more generally, ring maps k → R� S? The FFES gives us

ΩR/k ⊗R S → ΩS/k →

Repeat the same argument as before. We get:
Theorem. Let R� S be a map of k-algs. Let I = ker(R� S).
The following sequence of S-modules is exact.

I�I2
f 7→df⊗1−−−−−→ ΩR/k ⊗R S → ΩS/k → 0

Proof.

[00RU].
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I�I2
f 7→df⊗1−−−−−→ ΩR/k ⊗R S → ΩS/k → 0

Corollary. If A ∼= k[x1, . . . , xn]/(f1, . . . , fs), then

ΩA/k
∼= coker

[
∂fi
∂xj

]
.

Proof.

Let R = k[x1, . . . , xn], S = A, and observe that

dfi =

n∑
j=1

∂fi
∂xj

dxj .
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The second fundamental exact sequence

Examples are now easy:

1 If A = k[x, y]/(x2 − y3), then

ΩA/k
∼=

Adx⊕Ady
(2xdx− 3y2dy)

.

2 If A′ = k[x, y, z]/(xy, xz, yz), then

ΩA′/k
∼=

A′dx⊕A′dy ⊕A′dz
(xdy + ydx, xdz + zdx, ydz + zdy)

.

3 If A′′ = k[x1, . . . , xn]/(f1, . . . , fs), then

ΩA′′/k
∼=
A′′dx1 ⊕ · · ·A′′dxn

(df1, . . . , dfs)
.
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The second fundamental exact sequence

Geometry can be made more explicit:

Suppose (R,m, k) is a local ring, so it can be understood as in
correspondence with a point x of some LRS X. Using the map
of k-algs k → R� R/m = k, we get

m�m2
ϕ−→ ΩR/k ⊗R k → Ωk/k = 0

But ϕ is injective too! To see this, we’ll use the fact that Hom(−, k)
is left exact, and check that

Homk(ΩR/k ⊗R k, k)
ϕ∗−→ Homk(m/m

2, k)

is surjective.
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The second fundamental exact sequence

m�m2
ϕ−→→ ΩR/k ⊗R k → 0

0→ Homk(ΩR/k ⊗R k, k)
ϕ∗−→ Homk(m/m

2, k)

Why Hom(−, k)?!?! Because m/m2 is the Zariski cotangent space
at x, and its k-vector space dual Homk(m/m

2, k) is the tangent
space, so it’s reasonable to look at.
Idea: To show ϕ∗ is surjective, we show any k-linear morphism
ψ : m/m2 → k lifts to ΩR/k ⊗R k → k. Define a map R → k by
r = a+b for a ∈ k and b ∈ m; check that r 7→ ψ(b) is a derivation.
Then show ϕ∗ is surjective via universal property of ΩR/k.
So Kähler differentials tell us geometry! ΩR/k ⊗R k ∼= m/m2 is
the cotangent space.
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Where do you go from here?

ΩA/k is differentiation in module form. From last year’s CARES:
J1A is differentiation in k-algebra form. One might wonder: is
there a connection? Yes! And it’s exactly what you hope. The
functor Sym : Modk → Algk is the natural way to take a module
to an algebra. And indeed,

J1A ∼= Sym ΩA/k.
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Where do you go from here?

You can also build out differential forms à la Calculus 3 in the
natural way. Let Ωp

A/k be the pth exterior power of ΩA/k in the
category of A-modules.

The differential d : Ωp
A/k → Ωp+1

A/k satisfies d2 = 0 and there is a

multiplicative map Ωp
A/k⊗AΩq

A/k → Ωp+q
A/k, so we get a differential

graded algebra / cochain complex Ω
q
A/k.

Taking cohomology gives us de Rham cohomology

hi(Ω
q
A/k) := H i

dR(A/k).

Connect this to Duncan’s 15 Sept talk about the Koszul complex
and Čech / sheaf cohomology!
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Where do you go from here?

Homological algebra and derived functors: we have two sequences
which are exact on the right:

#1 : k → R→ S ⇒ ΩR/k ⊗R S → ΩS/k → ΩS/R → 0.

#2 : k → R
ψ−→→ S ⇒ kerψ�kerψ2 → ΩR/k ⊗R S → ΩS/k → 0.

You might want to extend to long exact sequences. This is kinda
funky since Algk is not an abelian category. But it can be done
homotopically. You get something called the cotangent complex
LA/k.
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Thank you!

Exact sequences. The Stacks project https://stacks.math.

columbia.edu Tags: [00RS] [00RU]

Jet spaces. Jet schemes and singularities, Lawrence Ein & Mircea
Mustaţă Ex 2.5

Homotopy and LA/k. An introduction to homological algebra,
Charles Weibel §8.8.
DAG IV: Deformation Theory, Jacob Lurie

https://stacks.math.columbia.edu
https://stacks.math.columbia.edu

