The module of Kähler differentials

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Eric Walker cew028@uark.edu

CARES

12 October 2021

## Outline

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

#### Topics:

- Why?
- Derivations
- Definition of the Kähler differentials
- Construction of the Kähler differentials
- The first fundamental exact sequence
- The second fundamental exact sequence
- Where do you go from here?

## Outline

#### Topics:

- Why?
- Derivations
- Definition of the Kähler differentials
- Construction of the Kähler differentials
- The first fundamental exact sequence
- The second fundamental exact sequence
- Where do you go from here?

Conventions:

- k is a ring, and all rings are commutative and unital
- a k-algebra is a ring A with a structure map  $\varphi:k\to A$

・ロト 《母 》 《田 》 《田 》 《日 》

Let's think about differentiation the way your calculus 1 students\* think about differentiation:

Let's think about differentiation the way your calculus 1 students\* think about differentiation:

Let  $f, g \in \mathbf{R}[x]$ . To take a derivative  $D_x[-]$  is to know the following rules:

Let's think about differentiation the way your calculus 1 students\* think about differentiation:

Let  $f, g \in \mathbf{R}[x]$ . To take a derivative  $D_x[-]$  is to know the following rules:

1  $D_x[c] = 0$  if  $c \in \mathbf{R}$ 

Let's think about differentiation the way your calculus 1 students<sup>\*</sup> think about differentiation:

Let  $f, g \in \mathbf{R}[x]$ . To take a derivative  $D_x[-]$  is to know the following rules:

- 1  $D_x[c] = 0$  if  $c \in \mathbf{R}$
- $2 D_x[x^n] = nx^{n-1}$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let's think about differentiation the way your calculus 1 students<sup>\*</sup> think about differentiation:

Let  $f, g \in \mathbf{R}[x]$ . To take a derivative  $D_x[-]$  is to know the following rules:

- 1  $D_x[c] = 0$  if  $c \in \mathbf{R}$
- $2 D_x[x^n] = nx^{n-1}$
- 3  $D_x[f+g] = D_x[f] + D_x[g]$

Let's think about differentiation the way your calculus 1 students\* think about differentiation:

Let  $f, g \in \mathbf{R}[x]$ . To take a derivative  $D_x[-]$  is to know the following rules:

1 
$$D_x[c] = 0$$
 if  $c \in \mathbf{R}$   
2  $D_x[x^n] = nx^{n-1}$   
3  $D_x[f+g] = D_x[f] + D_x[g]$   
4  $D_x[fg] = D_x[f]g + fD_x[g]$ 

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let's think about differentiation the way your calculus 1 students\* think about differentiation:

Let  $f, g \in \mathbf{R}[x]$ . To take a derivative  $D_x[-]$  is to know the following rules:

1 
$$D_x[c] = 0$$
 if  $c \in \mathbf{R}$   
2  $D_x[x^n] = nx^{n-1}$   
3  $D_x[f+g] = D_x[f] + D_x[g]$   
4  $D_x[fg] = D_x[f]g + fD_x[g]$ 

5 etc.

Let's think about differentiation the way your calculus 1 students<sup>\*</sup> think about differentiation:

Let  $f, g \in \mathbf{R}[x]$ . To take a derivative  $D_x[-]$  is to know the following rules:

$$\mathbf{1} \ D_x[c] = 0 \text{ if } c \in \mathbf{R}$$

$$2 D_x[x^n] = nx^{n-1}$$

3 
$$D_x[f+g] = D_x[f] + D_x[g]$$

$$4 \quad D_x[fg] = D_x[f]g + fD_x[g]$$

5 etc.

As algebraists, this is formal symbol moving, not  $\varepsilon$ -neighborhoods.

Let's think about differentiation the way your calculus 1 students<sup>\*</sup> think about differentiation:

Let  $f, g \in \mathbf{R}[x]$ . To take a derivative  $D_x[-]$  is to know the following rules:

1 
$$D_x[c] = 0$$
 if  $c \in \mathbf{R}$ 

$$2 D_x[x^n] = nx^{n-1}$$

3 
$$D_x[f+g] = D_x[f] + D_x[g]$$

$$4 \quad D_x[fg] = D_x[f]g + fD_x[g]$$

5 etc.

As algebraists, this is formal symbol moving, not  $\varepsilon$ -neighborhoods. (But will a geometric picture remain?)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

**Definition.** Let k be a ring. Let A be an k-algebra (i.e., there is a structure map  $\varphi : k \to A$ ). Let M be an A-module.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

**Definition.** Let k be a ring. Let A be an k-algebra (i.e., there is a structure map  $\varphi : k \to A$ ). Let M be an A-module. A k-linear derivation of A with coefficients in M is a homomorphism of abelian groups  $\delta : A \to M$  such that

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

**Definition.** Let k be a ring. Let A be an k-algebra (i.e., there is a structure map  $\varphi : k \to A$ ). Let M be an A-module. A k-linear derivation of A with coefficients in M is a homomorphism of abelian groups  $\delta : A \to M$  such that

1)  $\delta \varphi: k \to M$  is the zero map

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

**Definition.** Let k be a ring. Let A be an k-algebra (i.e., there is a structure map  $\varphi : k \to A$ ). Let M be an A-module. A k-linear derivation of A with coefficients in M is a homomorphism of abelian groups  $\delta : A \to M$  such that

- 1  $\delta \varphi : k \to M$  is the zero map
- **2**  $\delta$  satisfies the Leibniz rule: for all  $f, g \in A$ ,

$$\delta(fg) = \delta(f)g + f\delta(g).$$

**Definition.** Let k be a ring. Let A be an k-algebra (i.e., there is a structure map  $\varphi : k \to A$ ). Let M be an A-module. A k-linear derivation of A with coefficients in M is a homomorphism of abelian groups  $\delta : A \to M$  such that

- 1  $\delta \varphi: k \to M$  is the zero map
- **2**  $\delta$  satisfies the Leibniz rule: for all  $f, g \in A$ ,

$$\delta(fg)=\delta(f)g+f\delta(g).$$

This is some of the cal 1 rules... sorta. Is it enough?

Let  $f, g \in A$ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let  $f,g \in A$ .

**1** Sum Rule.  $\delta(f+g) = \delta(f) + \delta(g)$ , since  $\delta$  is a homomorphism of abelian groups.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let  $f,g \in A$ .

- **1** Sum Rule.  $\delta(f+g) = \delta(f) + \delta(g)$ , since  $\delta$  is a homomorphism of abelian groups.
- **2** Power Rule. Let n = 2.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let  $f, g \in A$ .

- **1** Sum Rule.  $\delta(f+g) = \delta(f) + \delta(g)$ , since  $\delta$  is a homomorphism of abelian groups.
- **2** Power Rule. Let n = 2.

$$\delta(f^2) = \delta(f \cdot f) = \delta(f)f + f\delta(f)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let  $f, g \in A$ .

- **1** Sum Rule.  $\delta(f+g) = \delta(f) + \delta(g)$ , since  $\delta$  is a homomorphism of abelian groups.
- **2** Power Rule. Let n = 2.

$$\delta(f^2) = \delta(f \cdot f) = \delta(f)f + f\delta(f)$$
$$= 2f\delta(f)$$

Let  $f, g \in A$ .

- **1** Sum Rule.  $\delta(f+g) = \delta(f) + \delta(g)$ , since  $\delta$  is a homomorphism of abelian groups.
- **2** Power Rule. Let n = 2.

$$\delta(f^2) = \delta(f \cdot f) = \delta(f)f + f\delta(f)$$
$$= 2f\delta(f)$$

Suppose the power rule holds for n = k - 1.

Let  $f, g \in A$ .

- **1** Sum Rule.  $\delta(f+g) = \delta(f) + \delta(g)$ , since  $\delta$  is a homomorphism of abelian groups.
- **2** Power Rule. Let n = 2.

$$\delta(f^2) = \delta(f \cdot f) = \delta(f)f + f\delta(f)$$
$$= 2f\delta(f)$$

Suppose the power rule holds for n = k - 1.

$$\delta(f^k) = \delta(f \cdot f^{k-1}) = \delta(f) f^{k-1} + f \delta(f^{k-1})$$

Let  $f, g \in A$ .

- **1** Sum Rule.  $\delta(f+g) = \delta(f) + \delta(g)$ , since  $\delta$  is a homomorphism of abelian groups.
- **2** Power Rule. Let n = 2.

$$\delta(f^2) = \delta(f \cdot f) = \delta(f)f + f\delta(f)$$
$$= 2f\delta(f)$$

Suppose the power rule holds for n = k - 1.

$$\begin{split} \delta(f^k) &= \delta(f \cdot f^{k-1}) = \delta(f) f^{k-1} + f \delta(f^{k-1}) \\ &= \delta(f) f^{k-1} + f(k-1) f^{k-2} \delta(f) \end{split}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 = のへで

Let  $f, g \in A$ .

- **1** Sum Rule.  $\delta(f+g) = \delta(f) + \delta(g)$ , since  $\delta$  is a homomorphism of abelian groups.
- **2** Power Rule. Let n = 2.

$$\delta(f^2) = \delta(f \cdot f) = \delta(f)f + f\delta(f)$$
$$= 2f\delta(f)$$

Suppose the power rule holds for n = k - 1.

$$\begin{split} \delta(f^k) &= \delta(f \cdot f^{k-1}) = \delta(f) f^{k-1} + f \delta(f^{k-1}) \\ &= \delta(f) f^{k-1} + f(k-1) f^{k-2} \delta(f) \\ &= \delta(f) f^{k-1} + (k-1) f^{k-1} \delta(f) \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let  $f,g \in A$ .

- **1** Sum Rule.  $\delta(f+g) = \delta(f) + \delta(g)$ , since  $\delta$  is a homomorphism of abelian groups.
- **2** Power Rule. Let n = 2.

$$\delta(f^2) = \delta(f \cdot f) = \delta(f)f + f\delta(f)$$
$$= 2f\delta(f)$$

Suppose the power rule holds for n = k - 1.

$$\begin{split} \delta(f^k) &= \delta(f \cdot f^{k-1}) = \delta(f) f^{k-1} + f \delta(f^{k-1}) \\ &= \delta(f) f^{k-1} + f(k-1) f^{k-2} \delta(f) \\ &= \delta(f) f^{k-1} + (k-1) f^{k-1} \delta(f) \\ &= k f^{k-1} \delta(f) \end{split}$$

<□▶ < □▶ < □▶ < □▶ < □▶ = □ - のへぐ

**3** Constant Rule.

**3** Constant Rule. What are constants?

**3 Constant Rule.** What are constants? In the cal 1 example, the constants are  $c \in \mathbf{R}$ , and polynomials live in  $\mathbf{R}[x]$ .

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

3 Constant Rule. What are constants? In the cal 1 example, the constants are c ∈ R, and polynomials live in R[x]. Since R[x] is a R-algebra, R plays the role of k and R[x] is A, and φ : R → R[x] is the natural map.

**3 Constant Rule.** What are constants? In the cal 1 example, the constants are  $c \in \mathbf{R}$ , and polynomials live in  $\mathbf{R}[x]$ . Since  $\mathbf{R}[x]$  is a **R**-algebra, **R** plays the role of k and  $\mathbf{R}[x]$  is A, and  $\varphi : \mathbf{R} \to \mathbf{R}[x]$  is the natural map. Even outside the setting of polynomial rings, elements in  $\varphi(k) \subseteq A$  are still considered constants. Let  $c \in k$ .

**3 Constant Rule.** What are constants? In the cal 1 example, the constants are  $c \in \mathbf{R}$ , and polynomials live in  $\mathbf{R}[x]$ . Since  $\mathbf{R}[x]$  is a **R**-algebra, **R** plays the role of k and  $\mathbf{R}[x]$  is A, and  $\varphi : \mathbf{R} \to \mathbf{R}[x]$  is the natural map. Even outside the setting of polynomial rings, elements in  $\varphi(k) \subseteq A$  are still considered constants. Let  $c \in k$ .

$$\delta(\varphi(c)) = \delta\varphi(c) = 0.$$

**3 Constant Rule.** What are constants? In the cal 1 example, the constants are  $c \in \mathbf{R}$ , and polynomials live in  $\mathbf{R}[x]$ . Since  $\mathbf{R}[x]$  is a **R**-algebra, **R** plays the role of k and  $\mathbf{R}[x]$  is A, and  $\varphi : \mathbf{R} \to \mathbf{R}[x]$  is the natural map. Even outside the setting of polynomial rings, elements in  $\varphi(k) \subseteq A$  are still considered constants. Let  $c \in k$ .

$$\delta(\varphi(c)) = \delta\varphi(c) = 0.$$

#### **4** Constant Multiple Rule.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

**3 Constant Rule.** What are constants? In the cal 1 example, the constants are  $c \in \mathbf{R}$ , and polynomials live in  $\mathbf{R}[x]$ . Since  $\mathbf{R}[x]$  is a **R**-algebra, **R** plays the role of k and  $\mathbf{R}[x]$  is A, and  $\varphi : \mathbf{R} \to \mathbf{R}[x]$  is the natural map. Even outside the setting of polynomial rings, elements in  $\varphi(k) \subseteq A$  are still considered constants. Let  $c \in k$ .

$$\delta(\varphi(c)) = \delta\varphi(c) = 0.$$

#### **4** Constant Multiple Rule.

$$\delta(\varphi(c)\cdot f)=\delta(\varphi(c))f+\varphi(c)\delta(f)$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

**3 Constant Rule.** What are constants? In the cal 1 example, the constants are  $c \in \mathbf{R}$ , and polynomials live in  $\mathbf{R}[x]$ . Since  $\mathbf{R}[x]$  is a **R**-algebra, **R** plays the role of k and  $\mathbf{R}[x]$  is A, and  $\varphi : \mathbf{R} \to \mathbf{R}[x]$  is the natural map. Even outside the setting of polynomial rings, elements in  $\varphi(k) \subseteq A$  are still considered constants. Let  $c \in k$ .

$$\delta(\varphi(c)) = \delta\varphi(c) = 0.$$

#### **4** Constant Multiple Rule.

$$\begin{split} \delta(\varphi(c) \cdot f) &= \delta(\varphi(c))f + \varphi(c)\delta(f) \\ &= \varphi(c)\delta(f). \end{split}$$

**3 Constant Rule.** What are constants? In the cal 1 example, the constants are  $c \in \mathbf{R}$ , and polynomials live in  $\mathbf{R}[x]$ . Since  $\mathbf{R}[x]$  is a **R**-algebra, **R** plays the role of k and  $\mathbf{R}[x]$  is A, and  $\varphi : \mathbf{R} \to \mathbf{R}[x]$  is the natural map. Even outside the setting of polynomial rings, elements in  $\varphi(k) \subseteq A$  are still considered constants. Let  $c \in k$ .

$$\delta(\varphi(c)) = \delta\varphi(c) = 0.$$

#### 4 Constant Multiple Rule.

$$\begin{split} \delta(\varphi(c) \cdot f) &= \delta(\varphi(c))f + \varphi(c)\delta(f) \\ &= \varphi(c)\delta(f). \end{split}$$

In almost all contexts we will care about,  $\varphi : k \to A$  is injective, so we will typically write c for  $\varphi(c)$ , and then  $\delta(cf) = c\delta(f)$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

#### Denote the set of all k-linear derivations $\delta:A\to M$ by

 $\operatorname{Der}_k(A; M).$ 

Denote the set of all k-linear derivations  $\delta: A \to M$  by

 $\operatorname{Der}_k(A; M).$ 

By the "Constant Multiple Rule,"  $\delta$  is a k-module homomorphism, so  $\text{Der}_k(A; M) \subseteq \text{Hom}_k(A, M)$ .

Denote the set of all k-linear derivations  $\delta: A \to M$  by

 $\operatorname{Der}_k(A; M).$ 

By the "**Constant Multiple Rule**,"  $\delta$  is a *k*-module homomorphism, so  $\text{Der}_k(A; M) \subseteq \text{Hom}_k(A, M)$ .

Not only that, but  $\text{Der}_k(A; M)$  is an A-submodule via the action  $(f \cdot \delta)(g) = f\delta(g)$ . We can add, subtract, and scale derivations.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition of the Kähler differentials **Definition.** The module of Kähler differentials of A over  $k, \ \Omega_{A/k},$ 

 $\Omega_{A/k}$ 

$$A \xrightarrow{d} \Omega_{A/k}$$

◆□ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ● ○ ○ ○ ○

Let  $\delta : A \to M$  be an k-linear derivation.

$$\begin{array}{c} A \xrightarrow{d} \Omega_{A/k} \\ \delta \\ M \end{array}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Let  $\delta: A \to M$  be an k-linear derivation. There exists a unique A-module homomorphism  $\Omega_{A/k} \to M$  such that the following diagram commutes.

$$\begin{array}{ccc} A & \stackrel{d}{\longrightarrow} & \Omega_{A/k} \\ \downarrow & & \swarrow & \uparrow & \uparrow \\ M & & & \downarrow & & \uparrow & \uparrow \\ M & & & & & \downarrow & & \uparrow & \uparrow & \downarrow \\ \end{array}$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let  $\delta: A \to M$  be an k-linear derivation. There exists a unique A-module homomorphism  $\Omega_{A/k} \to M$  such that the following diagram commutes.

$$\begin{array}{ccc} A & \stackrel{d}{\longrightarrow} & \Omega_{A/k} \\ \downarrow & \downarrow^{& \swarrow} \\ M \end{array}$$

That is, there is an isomorphism of A-modules

$$\operatorname{Hom}_A(\Omega_{A/k}, M) \cong \operatorname{Der}_k(A; M)$$

given by composition with the universal derivation  $d: A \to \Omega_{A/\underline{k}}$ .

We should always have universal property concerns!

We should always have universal property concerns!

A super basic exercise:  $\Omega_{A/k} = 0$  when  $\varphi : k \twoheadrightarrow A$ .

We should always have universal property concerns!

A super basic exercise:  $\Omega_{A/k} = 0$  when  $\varphi : k \twoheadrightarrow A$ .  $\varphi(k) = A$  so since  $\delta \varphi = 0, \delta : A \to M$  is 0.

We should always have universal property concerns!

A super basic exercise:  $\Omega_{A/k} = 0$  when  $\varphi : k \twoheadrightarrow A$ .  $\varphi(k) = A$  so since  $\delta \varphi = 0, \ \delta : A \to M$  is 0.

 $\operatorname{Hom}_A(\Omega_{A/k}, M) \cong \operatorname{Der}_k(A; M) = 0$ 

We should always have universal property concerns!

A super basic exercise:  $\Omega_{A/k} = 0$  when  $\varphi : k \twoheadrightarrow A$ .  $\varphi(k) = A$  so since  $\delta \varphi = 0, \delta : A \to M$  is 0.

$$\operatorname{Hom}_A(\Omega_{A/k}, M) \cong \operatorname{Der}_k(A; M) = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

But what about in general?

Here's the easiest way to build  $\Omega_{A/k}$ . Let

$$F = \bigoplus_{f \in A} A \cdot df.$$

Here's the easiest way to build  $\Omega_{A/k}$ . Let

$$F = \bigoplus_{f \in A} A \cdot df.$$

Let  $d: A \to F$  be d(f) = df. Define



Here's the easiest way to build  $\Omega_{A/k}$ . Let

$$F = \bigoplus_{f \in A} A \cdot df.$$

Let  $d: A \to F$  be d(f) = df. Define

$$K = F / \sim$$

Here's the easiest way to build  $\Omega_{A/k}$ . Let

$$F = \bigoplus_{f \in A} A \cdot df.$$

Let  $d: A \to F$  be d(f) = df. Define

$$K = F / \sim$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

where the relations are

Here's the easiest way to build  $\Omega_{A/k}$ . Let

$$F = \bigoplus_{f \in A} A \cdot df.$$

Let  $d: A \to F$  be d(f) = df. Define

$$K = F / \sim$$

where the relations are

 $\bullet \ d(f+g)=df+dg,$ 

Here's the easiest way to build  $\Omega_{A/k}$ . Let

$$F = \bigoplus_{f \in A} A \cdot df.$$

Let  $d: A \to F$  be d(f) = df. Define

$$K = F / \sim$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

where the relations are

• 
$$d(f+g) = df + dg$$
,

• 
$$d(fg) = df \cdot g + f \cdot dg$$
,

Here's the easiest way to build  $\Omega_{A/k}$ . Let

$$F = \bigoplus_{f \in A} A \cdot df.$$

Let  $d: A \to F$  be d(f) = df. Define

$$K = F / \sim$$

where the relations are

- $\bullet \ d(f+g)=df+dg,$
- $\bullet \ d(fg) = df \cdot g + f \cdot dg,$
- $d\varphi(c) = 0.$

Easy exercise: by construction, K along with the map  $d: A \to K$ satisfies the universal property of  $\Omega_{A/k}, d$ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Easy exercise: by construction, K along with the map  $d: A \to K$ satisfies the universal property of  $\Omega_{A/k}, d$ .

Idea: this is the formal symbol moving of calculus 1 students. Building K amounts to defining exactly the relations needed, and no more, that guarantee  $d: A \to K$  is a derivation.

Easy exercise: by construction, K along with the map  $d: A \to K$ satisfies the universal property of  $\Omega_{A/k}, d$ .

Idea: this is the formal symbol moving of calculus 1 students. Building K amounts to defining exactly the relations needed, and no more, that guarantee  $d: A \to K$  is a derivation.

But this shouldn't necessarily sit well with us: where is the geometry?

A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A

Here's the second easiest way to build  $\Omega_{A/k}$ . Let

 $\mu: A \otimes_k A \to A$ 

be  $\mu(f \otimes g) = fg$ .

Here's the second easiest way to build  $\Omega_{A/k}$ . Let

$$\mu: A \otimes_k A \to A$$

be  $\mu(f \otimes g) = fg$ . Let  $I = \ker \mu$ . Let

$$K' = I / I^2.$$

Here's the second easiest way to build  $\Omega_{A/k}$ . Let

$$\mu: A \otimes_k A \to A$$

be 
$$\mu(f \otimes g) = fg$$
.  
Let  $I = \ker \mu$ . Let

$$K' = I / I^2.$$

Let  $d: A \to K'$  be defined by  $d(f) = 1 \otimes f - f \otimes 1$ .

Medium exercise: by construction, K' along with the morphism  $d: A \to K'$  satisfies the universal property of  $\Omega_{A/k}, d$ .

Medium exercise: by construction, K' along with the morphism  $d: A \to K'$  satisfies the universal property of  $\Omega_{A/k}, d$ . Algebraic idea: the differential hints that it's ultimately the same algebraic relations, since d forces the Leibniz rule.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへぐ

Medium exercise: by construction, K' along with the morphism  $d: A \to K'$  satisfies the universal property of  $\Omega_{A/k}, d$ . Algebraic idea: the differential hints that it's ultimately the same algebraic relations, since d forces the Leibniz rule.

But why  $I/I^2$ ? There's geometry here!

Medium exercise: by construction, K' along with the morphism  $d: A \to K'$  satisfies the universal property of  $\Omega_{A/k}, d$ . Algebraic idea: the differential hints that it's ultimately the same algebraic relations, since d forces the Leibniz rule.

But why  $I/I^2$ ? There's geometry here!

Thinking in terms of elements of a ring as functions, the module  $I/I^2$  amounts to functions which vanish modulo vanishing to second order.

Medium exercise: by construction, K' along with the morphism  $d: A \to K'$  satisfies the universal property of  $\Omega_{A/k}, d$ . Algebraic idea: the differential hints that it's ultimately the same algebraic relations, since d forces the Leibniz rule.

But why  $I/I^2$ ? There's geometry here!

Thinking in terms of elements of a ring as functions, the module  $I/I^2$  amounts to functions which vanish modulo vanishing to second order.

You can think: take a Taylor series and truncate it to get the first order differentiation. We'll see more geometry later!

Let  $A = k[x_1, \ldots, x_n]$ . What is  $\Omega_{A/k}$ ? We claim it is

 $A \cdot dx_1 \oplus \cdots \oplus A \cdot dx_n.$ 

4 日 > 4 日 > 4 日 > 4 日 > 4 日 > 4 日 > 9 4 0

Let  $A = k[x_1, \ldots, x_n]$ . What is  $\Omega_{A/k}$ ? We claim it is

 $A \cdot dx_1 \oplus \cdots \oplus A \cdot dx_n.$ 

Let  $M = Adx_1 \oplus \cdots \oplus Adx_n$ . The partial derivative  $\partial_i : A \to Adx_i$  is a derivation, so  $\delta = \sum \partial_i$  is a derivation  $A \to M$ .



Let  $A = k[x_1, \ldots, x_n]$ . What is  $\Omega_{A/k}$ ? We claim it is

 $A \cdot dx_1 \oplus \cdots \oplus A \cdot dx_n.$ 

Let  $M = Adx_1 \oplus \cdots \oplus Adx_n$ . The partial derivative  $\partial_i : A \to Adx_i$ is a derivation, so  $\delta = \sum \partial_i$  is a derivation  $A \to M$ . Using the universal property, we get a unique A-module map  $\psi$ such that the diagram commutes.



Let  $A = k[x_1, \ldots, x_n]$ . What is  $\Omega_{A/k}$ ? We claim it is

 $A \cdot dx_1 \oplus \cdots \oplus A \cdot dx_n.$ 

Let  $M = Adx_1 \oplus \cdots \oplus Adx_n$ . The partial derivative  $\partial_i : A \to Adx_i$ is a derivation, so  $\delta = \sum \partial_i$  is a derivation  $A \to M$ . Using the universal property, we get a unique A-module map  $\psi$ such that the diagram commutes.



Let  $\Omega_{A/k} \cong \bigoplus Adf / \sim$ , which was our first construction.





 $\psi$  is injective: If  $\psi(df) = 0$ , then  $\delta(f) = 0$ , so  $\partial_i(f) = 0dx_i$  for all *i*. Thus *f* is  $x_i$ -free, i.e.,  $f \in k$ , so df = 0 in  $\bigoplus Adf / \sim$ .

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>



 $\psi$  is injective: If  $\psi(df) = 0$ , then  $\delta(f) = 0$ , so  $\partial_i(f) = 0dx_i$  for all *i*. Thus *f* is  $x_i$ -free, i.e.,  $f \in k$ , so df = 0 in  $\bigoplus Adf / \sim$ .  $\psi$  is surjective:  $Adx_1 \oplus \cdots \oplus Adx_n$  has an *A*-basis  $\{1dx_1, \ldots, 1dx_n\}$ . The element  $dx_i \in \bigoplus Adf / \sim$  satisfies

うして ふゆ とう かんし とう うくしゃ



 $\psi$  is injective: If  $\psi(df) = 0$ , then  $\delta(f) = 0$ , so  $\partial_i(f) = 0dx_i$  for all *i*. Thus *f* is  $x_i$ -free, i.e.,  $f \in k$ , so df = 0 in  $\bigoplus Adf / \sim$ .  $\psi$  is surjective:  $Adx_1 \oplus \cdots \oplus Adx_n$  has an *A*-basis  $\{1dx_1, \ldots, 1dx_n\}$ . The element  $dx_i \in \bigoplus Adf / \sim$  satisfies

うして ふゆ とう かんし とう うくしゃ

$$\psi\left(dx_i\right) = \delta\left(x_i\right)$$



 $\psi$  is injective: If  $\psi(df) = 0$ , then  $\delta(f) = 0$ , so  $\partial_i(f) = 0dx_i$  for all *i*. Thus *f* is  $x_i$ -free, i.e.,  $f \in k$ , so df = 0 in  $\bigoplus Adf / \sim$ .  $\psi$  is surjective:  $Adx_1 \oplus \cdots \oplus Adx_n$  has an *A*-basis  $\{1dx_1, \ldots, 1dx_n\}$ . The element  $dx_i \in \bigoplus Adf / \sim$  satisfies

$$\psi (dx_i) = \delta (x_i)$$
$$= \sum_{j=1}^n \partial_j (x_i)$$



 $\psi$  is injective: If  $\psi(df) = 0$ , then  $\delta(f) = 0$ , so  $\partial_i(f) = 0dx_i$  for all *i*. Thus *f* is  $x_i$ -free, i.e.,  $f \in k$ , so df = 0 in  $\bigoplus Adf / \sim$ .  $\psi$  is surjective:  $Adx_1 \oplus \cdots \oplus Adx_n$  has an *A*-basis  $\{1dx_1, \ldots, 1dx_n\}$ . The element  $dx_i \in \bigoplus Adf / \sim$  satisfies

$$\psi (dx_i) = \delta (x_i)$$
$$= \sum_{j=1}^n \partial_j (x_i)$$
$$= 1 \cdot dx_i,$$

・ロト ・ ロト ・ 田 ト ・ 田 ト ・ 日 ・ つへで



 $\psi$  is injective: If  $\psi(df) = 0$ , then  $\delta(f) = 0$ , so  $\partial_i(f) = 0dx_i$  for all *i*. Thus *f* is  $x_i$ -free, i.e.,  $f \in k$ , so df = 0 in  $\bigoplus Adf / \sim$ .  $\psi$  is surjective:  $Adx_1 \oplus \cdots \oplus Adx_n$  has an *A*-basis  $\{1dx_1, \ldots, 1dx_n\}$ . The element  $dx_i \in \bigoplus Adf / \sim$  satisfies

$$\psi (dx_i) = \delta (x_i)$$
$$= \sum_{j=1}^n \partial_j (x_i)$$
$$= 1 \cdot dx_i,$$

so  $\{dx_1, \ldots, dx_n\} \subseteq \bigoplus Adf / \sim$  maps to the basis  $\{1dx_1, \ldots, 1dx_n\}$ under  $\psi$ .

$$f = \sum_{i,j} c_{ij} x^i y^j.$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$f = \sum_{i,j} c_{ij} x^i y^j.$$

An explicit computation:

$$f = \sum_{i,j} c_{ij} x^i y^j.$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

An explicit computation:

$$df = \sum_{i,j} c_{ij} d\left(x^i y^j\right)$$

$$f = \sum_{i,j} c_{ij} x^i y^j.$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

An explicit computation:

$$df = \sum_{i,j} c_{ij} d\left(x^{i} y^{j}\right) = \sum_{i,j} c_{ij} \left(d\left(x^{i}\right) y^{j} + x^{i} d\left(y^{j}\right)\right)$$

$$f = \sum_{i,j} c_{ij} x^i y^j.$$

An explicit computation:

$$df = \sum_{i,j} c_{ij} d\left(x^{i} y^{j}\right) = \sum_{i,j} c_{ij} \left(d\left(x^{i}\right) y^{j} + x^{i} d\left(y^{j}\right)\right)$$
$$= \sum_{i,j} c_{ij} \left(i x^{i-1} y^{j} dx + x^{i} j y^{j-1} dy\right)$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Another example (goal: to generalize)! Let  $A = k[x, y]/(y - x^2)$ . If  $f \in A$ , then we can represent

$$f = \sum_{i,j} c_{ij} x^i y^j.$$

An explicit computation:

$$df = \sum_{i,j} c_{ij} d\left(x^{i} y^{j}\right) = \sum_{i,j} c_{ij} \left(d\left(x^{i}\right) y^{j} + x^{i} d\left(y^{j}\right)\right)$$
$$= \sum_{i,j} c_{ij} \left(i x^{i-1} y^{j} dx + x^{i} j y^{j-1} dy\right)$$

So  $\Omega_{A/k}$  is generated as an A-module by dx and dy.

Another example (goal: to generalize)! Let  $A = k[x, y]/(y - x^2)$ . If  $f \in A$ , then we can represent

$$f = \sum_{i,j} c_{ij} x^i y^j.$$

An explicit computation:

$$df = \sum_{i,j} c_{ij} d\left(x^{i} y^{j}\right) = \sum_{i,j} c_{ij} \left(d\left(x^{i}\right) y^{j} + x^{i} d\left(y^{j}\right)\right)$$
$$= \sum_{i,j} c_{ij} \left(i x^{i-1} y^{j} dx + x^{i} j y^{j-1} dy\right)$$

So  $\Omega_{A/k}$  is generated as an A-module by dx and dy. Since  $y - x^2 = 0$  in A, expect  $d(y - x^2) = dy - 2xdx = 0$  in  $\Omega_{A/k}$ .

うして ふゆ とう かんし とう うくしゃ

Another example (goal: to generalize)! Let  $A = k[x, y]/(y - x^2)$ . If  $f \in A$ , then we can represent

$$f = \sum_{i,j} c_{ij} x^i y^j.$$

An explicit computation:

$$df = \sum_{i,j} c_{ij} d\left(x^{i} y^{j}\right) = \sum_{i,j} c_{ij} \left(d\left(x^{i}\right) y^{j} + x^{i} d\left(y^{j}\right)\right)$$
$$= \sum_{i,j} c_{ij} \left(i x^{i-1} y^{j} dx + x^{i} j y^{j-1} dy\right)$$

So  $\Omega_{A/k}$  is generated as an A-module by dx and dy. Since  $y - x^2 = 0$  in A, expect  $d(y - x^2) = dy - 2xdx = 0$  in  $\Omega_{A/k}$ . Indeed, one can check that

$$\Omega_{A/k} \to A \cdot dx \oplus A \cdot dy \twoheadrightarrow A \cdot dx \oplus A \cdot dy / (dy - 2xdx))$$

is an isomorphism.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Another example (goal: to generalize)! Let  $A = k[x, y]/(y - x^2)$ . If  $f \in A$ , then we can represent

$$f = \sum_{i,j} c_{ij} x^i y^j.$$

An explicit computation:

$$df = \sum_{i,j} c_{ij} d\left(x^{i} y^{j}\right) = \sum_{i,j} c_{ij} \left(d\left(x^{i}\right) y^{j} + x^{i} d\left(y^{j}\right)\right)$$
$$= \sum_{i,j} c_{ij} \left(i x^{i-1} y^{j} dx + x^{i} j y^{j-1} dy\right)$$

So  $\Omega_{A/k}$  is generated as an A-module by dx and dy. Since  $y - x^2 = 0$  in A, expect  $d(y - x^2) = dy - 2xdx = 0$  in  $\Omega_{A/k}$ . Indeed, one can check that

$$\Omega_{A/k} \to A \cdot dx \oplus A \cdot dy \twoheadrightarrow A \cdot dx \oplus A \cdot dy / (dy - 2xdx))$$

is an isomorphism. But that doesn't generalize.

**Theorem.** Let  $k \to R \to S$  be ring maps. The following sequence of S-modules is exact.

$$\Omega_{R/k} \otimes_R S \to \Omega_{S/k} \to \Omega_{S/R} \to 0$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

**Theorem.** Let  $k \to R \to S$  be ring maps. The following sequence of S-modules is exact.

$$\Omega_{R/k} \otimes_R S \to \Omega_{S/k} \to \Omega_{S/R} \to 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof.

[00RS].

Before we see #2, let's see an example (which motivates #2).

Before we see #2, let's see an example (which motivates #2). Let  $k \hookrightarrow k[x, y] \twoheadrightarrow k[x, y]/(f) = A$  be ring maps. By the FFES,

Before we see #2, let's see an example (which motivates #2). Let  $k \hookrightarrow k[x, y] \twoheadrightarrow k[x, y]/(f) = A$  be ring maps. By the FFES,

$$\Omega_{k[x,y]/k} \otimes_{k[x,y]} A \to \Omega_{A/k} \to \Omega_{A/k[x,y]} \to 0.$$

Before we see #2, let's see an example (which motivates #2). Let  $k \hookrightarrow k[x, y] \twoheadrightarrow k[x, y]/(f) = A$  be ring maps. By the FFES,

$$\Omega_{k[x,y]/k} \otimes_{k[x,y]} A \to \Omega_{A/k} \to \Omega_{A/k[x,y]} \to 0.$$

 $k[x,y] \twoheadrightarrow A$ , so  $\Omega_{A/k[x,y]} = 0$ .

Before we see #2, let's see an example (which motivates #2). Let  $k \hookrightarrow k[x, y] \twoheadrightarrow k[x, y]/(f) = A$  be ring maps. By the FFES,

$$\Omega_{k[x,y]/k} \otimes_{k[x,y]} A \to \Omega_{A/k} \to 0 \to 0.$$

 $k[x,y] \twoheadrightarrow A$ , so  $\Omega_{A/k[x,y]} = 0$ .

Before we see #2, let's see an example (which motivates #2). Let  $k \hookrightarrow k[x, y] \twoheadrightarrow k[x, y]/(f) = A$  be ring maps. By the FFES,

$$\Omega_{k[x,y]/k} \otimes_{k[x,y]} A \to \Omega_{A/k} \to 0 \to 0.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへぐ

 $k[x, y] \twoheadrightarrow A$ , so  $\Omega_{A/k[x,y]} = 0$ . We also know  $\Omega_{k[x,y]/k} \cong k[x, y]dx \oplus k[x, y]dy$ .

Before we see #2, let's see an example (which motivates #2). Let  $k \hookrightarrow k[x, y] \twoheadrightarrow k[x, y]/(f) = A$  be ring maps. By the FFES,

$$(k[x,y] \cdot dx \oplus k[x,y] \cdot dy) \otimes_{k[x,y]} A \to \Omega_{A/k} \to 0 \to 0.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへぐ

 $k[x, y] \twoheadrightarrow A$ , so  $\Omega_{A/k[x,y]} = 0$ . We also know  $\Omega_{k[x,y]/k} \cong k[x, y]dx \oplus k[x, y]dy$ .

Before we see #2, let's see an example (which motivates #2). Let  $k \hookrightarrow k[x, y] \twoheadrightarrow k[x, y]/(f) = A$  be ring maps. By the FFES,

$$(k[x,y] \cdot dx \oplus k[x,y] \cdot dy) \otimes_{k[x,y]} A \to \Omega_{A/k} \to 0 \to 0.$$

 $k[x,y] \rightarrow A$ , so  $\Omega_{A/k[x,y]} = 0$ . We also know  $\Omega_{k[x,y]/k} \cong k[x,y]dx \oplus k[x,y]dy$ . Distribute and compute the tensor product base change.

Before we see #2, let's see an example (which motivates #2). Let  $k \hookrightarrow k[x, y] \twoheadrightarrow k[x, y]/(f) = A$  be ring maps. By the FFES,

$$A \cdot dx \oplus A \cdot dy \to \Omega_{A/k} \to 0 \to 0.$$

 $k[x, y] \rightarrow A$ , so  $\Omega_{A/k[x,y]} = 0$ . We also know  $\Omega_{k[x,y]/k} \cong k[x, y]dx \oplus k[x, y]dy$ . Distribute and compute the tensor product base change.

Before we see #2, let's see an example (which motivates #2). Let  $k \hookrightarrow k[x, y] \twoheadrightarrow k[x, y]/(f) = A$  be ring maps. By the FFES,

$$A \cdot dx \oplus A \cdot dy \xrightarrow{\psi} \Omega_{A/k} \to 0 \to 0.$$

 $k[x, y] \rightarrow A$ , so  $\Omega_{A/k[x,y]} = 0$ . We also know  $\Omega_{k[x,y]/k} \cong k[x, y]dx \oplus k[x, y]dy$ . Distribute and compute the tensor product base change. Therefore  $\Omega_{A/k}$  is a quotient of  $Adx \oplus Ady$ . If we knew the kernel of  $\psi$ , we'd be happy.

Before we see #2, let's see an example (which motivates #2). Let  $k \hookrightarrow k[x, y] \twoheadrightarrow k[x, y]/(f) = A$  be ring maps. By the FFES,

$$A \cdot dx \oplus A \cdot dy \xrightarrow{\psi} \Omega_{A/k} \to 0 \to 0.$$

 $k[x, y] \rightarrow A$ , so  $\Omega_{A/k[x,y]} = 0$ . We also know  $\Omega_{k[x,y]/k} \cong k[x, y]dx \oplus k[x, y]dy$ . Distribute and compute the tensor product base change. Therefore  $\Omega_{A/k}$  is a quotient of  $Adx \oplus Ady$ . If we knew the kernel of  $\psi$ , we'd be happy. Since f = 0 in A,

Before we see #2, let's see an example (which motivates #2). Let  $k \hookrightarrow k[x, y] \twoheadrightarrow k[x, y]/(f) = A$  be ring maps. By the FFES,

$$\Omega_{k[x,y]/k} \otimes_{k[x,y]} A \xrightarrow{\psi} \Omega_{A/k} \to 0 \to 0.$$

 $k[x, y] \rightarrow A$ , so  $\Omega_{A/k[x,y]} = 0$ . We also know  $\Omega_{k[x,y]/k} \cong k[x, y]dx \oplus k[x, y]dy$ . Distribute and compute the tensor product base change. Therefore  $\Omega_{A/k}$  is a quotient of  $Adx \oplus Ady$ . If we knew the kernel of  $\psi$ , we'd be happy. Since f = 0 in A,  $df \otimes 1 \in \Omega_{k[x,y]/k} \otimes A$  maps to 0 under  $\psi$ . So we might hope to define the following map.

Before we see #2, let's see an example (which motivates #2). Let  $k \hookrightarrow k[x, y] \twoheadrightarrow k[x, y]/(f) = A$  be ring maps. By the FFES,

$$(f) \to \Omega_{k[x,y]/k} \otimes_{k[x,y]} A \xrightarrow{\psi} \Omega_{A/k} \to 0 \to 0.$$

 $k[x, y] \rightarrow A$ , so  $\Omega_{A/k[x,y]} = 0$ . We also know  $\Omega_{k[x,y]/k} \cong k[x, y]dx \oplus k[x, y]dy$ . Distribute and compute the tensor product base change. Therefore  $\Omega_{A/k}$  is a quotient of  $Adx \oplus Ady$ . If we knew the kernel of  $\psi$ , we'd be happy. Since f = 0 in A,  $df \otimes 1 \in \Omega_{k[x,y]/k} \otimes A$  maps to 0 under  $\psi$ . So we might hope to define the following map.

Before we see #2, let's see an example (which motivates #2). Let  $k \hookrightarrow k[x, y] \twoheadrightarrow k[x, y]/(f) = A$  be ring maps. By the FFES,

$$(f) \to \Omega_{k[x,y]/k} \otimes_{k[x,y]} A \xrightarrow{\psi} \Omega_{A/k} \to 0 \to 0.$$

$$\begin{split} k[x,y] &\twoheadrightarrow A, \text{ so } \Omega_{A/k[x,y]} = 0. \\ \text{We also know } \Omega_{k[x,y]/k} \cong k[x,y]dx \oplus k[x,y]dy. \\ \text{Distribute and compute the tensor product base change.} \\ \text{Therefore } \Omega_{A/k} \text{ is a quotient of } Adx \oplus Ady. \text{ If we knew the kernel of } \psi, \text{ we'd be happy.} \\ \text{Since } f = 0 \text{ in } A, df \otimes 1 \in \Omega_{k[x,y]/k} \otimes A \text{ maps to } 0 \text{ under } \psi. \text{ So we might hope to define the following map.} \\ \text{But } (f) \text{ isn't an } A\text{-module, it's a } k[x,y]\text{-module. So we base change to } A. \end{split}$$

Before we see #2, let's see an example (which motivates #2). Let  $k \hookrightarrow k[x, y] \twoheadrightarrow k[x, y]/(f) = A$  be ring maps. By the FFES,

$$(f) \otimes_{k[x,y]} A \to \Omega_{k[x,y]/k} \otimes_{k[x,y]} A \xrightarrow{\psi} \Omega_{A/k} \to 0 \to 0.$$

 $k[x, y] \rightarrow A$ , so  $\Omega_{A/k[x,y]} = 0$ . We also know  $\Omega_{k[x,y]/k} \cong k[x, y]dx \oplus k[x, y]dy$ . Distribute and compute the tensor product base change. Therefore  $\Omega_{A/k}$  is a quotient of  $Adx \oplus Ady$ . If we knew the kernel of  $\psi$ , we'd be happy. Since f = 0 in A,  $df \otimes 1 \in \Omega_{k[x,y]/k} \otimes A$  maps to 0 under  $\psi$ . So we might hope to define the following map. But (f) isn't an A-module, it's a k[x, y]-module. So we base change to A.

Before we see #2, let's see an example (which motivates #2). Let  $k \hookrightarrow k[x, y] \twoheadrightarrow k[x, y]/(f) = A$  be ring maps. By the FFES,

$$(f)_{(f^2)} \to \Omega_{k[x,y]/k} \otimes_{k[x,y]} A \xrightarrow{\psi} \Omega_{A/k} \to 0 \to 0.$$

 $k[x, y] \rightarrow A$ , so  $\Omega_{A/k[x,y]} = 0$ . We also know  $\Omega_{k[x,y]/k} \cong k[x, y]dx \oplus k[x, y]dy$ . Distribute and compute the tensor product base change. Therefore  $\Omega_{+,\mu}$  is a quotient of  $Adx \oplus Ady$ . If we know th

Therefore  $\Omega_{A/k}$  is a quotient of  $Adx \oplus Ady$ . If we knew the kernel of  $\psi$ , we'd be happy.

Since f = 0 in A,  $df \otimes 1 \in \Omega_{k[x,y]/k} \otimes A$  maps to 0 under  $\psi$ . So we might hope to define the following map.

But (f) isn't an A-module, it's a k[x, y]-module. So we base change to A.

Before we see #2, let's see an example (which motivates #2). Let  $k \hookrightarrow k[x, y] \twoheadrightarrow k[x, y]/(f) = A$  be ring maps. By the FFES,

$$(f)_{(f^2)} \to \Omega_{k[x,y]/k} \otimes_{k[x,y]} A \xrightarrow{\psi} \Omega_{A/k} \to 0 \to 0.$$

 $k[x, y] \twoheadrightarrow A$ , so  $\Omega_{A/k[x,y]} = 0$ . We also know  $\Omega_{k[x,y]/k} \cong k[x, y]dx \oplus k[x, y]dy$ .

Distribute and compute the tensor product base change.

Therefore  $\Omega_{A/k}$  is a quotient of  $Adx \oplus Ady$ . If we knew the kernel of  $\psi$ , we'd be happy.

Since f = 0 in A,  $df \otimes 1 \in \Omega_{k[x,y]/k} \otimes A$  maps to 0 under  $\psi$ . So we might hope to define the following map.

But (f) isn't an A-module, it's a k[x, y]-module. So we base change to A.

Now the above sequence is exact.

$$(f)_{(f^2)} \to \Omega_{k[x,y]/k} \otimes_{k[x,y]} A \to \Omega_{A/k} \to 0$$

What happens when  $A \neq k[x, y]/(f)$ ? E.g.,  $k[x, y]/(f_1, \dots, f_s)$ ? Or, more generally, ring maps  $k \to R \twoheadrightarrow S$ ? The FFES gives us

$$(f)_{(f^2)} \to \Omega_{k[x,y]/k} \otimes_{k[x,y]} A \to \Omega_{A/k} \to 0$$

What happens when  $A \neq k[x, y]/(f)$ ? E.g.,  $k[x, y]/(f_1, \dots, f_s)$ ? Or, more generally, ring maps  $k \to R \twoheadrightarrow S$ ? The FFES gives us

$$\Omega_{R/k} \otimes_R S \to \Omega_{S/k} \to \Omega_{S/R} \to 0$$

$$(f)_{(f^2)} \to \Omega_{k[x,y]/k} \otimes_{k[x,y]} A \to \Omega_{A/k} \to 0$$

What happens when  $A \neq k[x, y]/(f)$ ? E.g.,  $k[x, y]/(f_1, \ldots, f_s)$ ? Or, more generally, ring maps  $k \to R \twoheadrightarrow S$ ? The FFES gives us

$$\Omega_{R/k} \otimes_R S \to \Omega_{S/k} \to 0$$

$$(f)_{(f^2)} \to \Omega_{k[x,y]/k} \otimes_{k[x,y]} A \to \Omega_{A/k} \to 0$$

What happens when  $A \neq k[x, y]/(f)$ ? E.g.,  $k[x, y]/(f_1, \ldots, f_s)$ ? Or, more generally, ring maps  $k \to R \twoheadrightarrow S$ ? The FFES gives us

$$\Omega_{R/k} \otimes_R S \to \Omega_{S/k} \to 0$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Repeat the same argument as before. We get:

$$(f)_{(f^2)} \to \Omega_{k[x,y]/k} \otimes_{k[x,y]} A \to \Omega_{A/k} \to 0$$

What happens when  $A \neq k[x, y]/(f)$ ? E.g.,  $k[x, y]/(f_1, \ldots, f_s)$ ? Or, more generally, ring maps  $k \to R \twoheadrightarrow S$ ? The FFES gives us

$$\Omega_{R/k} \otimes_R S \to \Omega_{S/k} \to 0$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Repeat the same argument as before. We get:

$$(f)_{(f^2)} \to \Omega_{k[x,y]/k} \otimes_{k[x,y]} A \to \Omega_{A/k} \to 0$$

What happens when  $A \neq k[x, y]/(f)$ ? E.g.,  $k[x, y]/(f_1, \dots, f_s)$ ? Or, more generally, ring maps  $k \to R \twoheadrightarrow S$ ? The FFES gives us

$$\Omega_{R/k} \otimes_R S \to \Omega_{S/k} \to 0$$

Repeat the same argument as before. We get: **Theorem.** Let  $R \rightarrow S$  be a map of k-algs. Let  $I = \ker(R \rightarrow S)$ . The following sequence of S-modules is exact.

$$I \not/_{I^2} \xrightarrow{f \mapsto df \otimes 1} \Omega_{R/k} \otimes_R S \to \Omega_{S/k} \to 0$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

$$(f)_{(f^2)} \to \Omega_{k[x,y]/k} \otimes_{k[x,y]} A \to \Omega_{A/k} \to 0$$

What happens when  $A \neq k[x, y]/(f)$ ? E.g.,  $k[x, y]/(f_1, \ldots, f_s)$ ? Or, more generally, ring maps  $k \rightarrow R \twoheadrightarrow S$ ? The FFES gives us

$$\Omega_{R/k} \otimes_R S \to \Omega_{S/k} \to 0$$

Repeat the same argument as before. We get: **Theorem.** Let  $R \rightarrow S$  be a map of k-algs. Let  $I = \ker(R \rightarrow S)$ . The following sequence of S-modules is exact.

$$I / I^2 \xrightarrow{f \mapsto df \otimes 1} \Omega_{R/k} \otimes_R S \to \Omega_{S/k} \to 0$$

Proof. [00RU].

$$I_{I^2} \xrightarrow{f \mapsto df \otimes 1} \Omega_{R/k} \otimes_R S \to \Omega_{S/k} \to 0$$

$$I_{I^2} \xrightarrow{f \mapsto df \otimes 1} \Omega_{R/k} \otimes_R S \to \Omega_{S/k} \to 0$$

**Corollary.** If  $A \cong k[x_1, \ldots, x_n]/(f_1, \ldots, f_s)$ , then

$$\Omega_{A/k} \cong \operatorname{coker} \left[ \frac{\partial f_i}{\partial x_j} \right].$$

$$\stackrel{I}{\swarrow}_{I^2} \xrightarrow{f \mapsto df \otimes 1} \Omega_{R/k} \otimes_R S \to \Omega_{S/k} \to 0$$

**Corollary.** If  $A \cong k[x_1, \dots, x_n]/(f_1, \dots, f_s)$ , then  $\Omega_{A/k} \cong \operatorname{coker} \left[\frac{\partial f_i}{\partial x_i}\right].$ 

#### Proof.

Let  $R = k[x_1, \ldots, x_n]$ , S = A, and observe that

$$df_i = \sum_{j=1}^n \frac{\partial f_i}{\partial x_j} dx_j.$$

< ロ ト < 母 ト < 臣 ト < 臣 ト 三 三 つへ()</p>

Examples are now easy:

Examples are now easy:

1 If  $A = k[x, y]/(x^2 - y^3)$ , then

$$\Omega_{A/k} \cong \frac{Adx \oplus Ady}{(2xdx - 3y^2dy)}.$$

Examples are now easy:

1) If 
$$A = k[x, y]/(x^2 - y^3)$$
, then

$$\Omega_{A/k} \cong \frac{Adx \oplus Ady}{(2xdx - 3y^2dy)}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

2 If 
$$A' = k[x, y, z]/(xy, xz, yz)$$
, then  

$$\Omega_{A'/k} \cong \frac{A'dx \oplus A'dy \oplus A'dz}{(xdy + ydx, xdz + zdx, ydz + zdy)}$$

Examples are now easy:

1 If 
$$A = k[x, y]/(x^2 - y^3)$$
, then

$$\Omega_{A/k} \cong \frac{Adx \oplus Ady}{(2xdx - 3y^2dy)}.$$

2 If 
$$A' = k[x, y, z]/(xy, xz, yz)$$
, then  

$$\Omega_{A'/k} \cong \frac{A'dx \oplus A'dy \oplus A'dz}{(xdy + ydx, xdz + zdx, ydz + zdy)}.$$

3 If 
$$A'' = k[x_1, \dots, x_n]/(f_1, \dots, f_s)$$
, then  

$$\Omega_{A''/k} \cong \frac{A''dx_1 \oplus \cdots A''dx_n}{(df_1, \dots, df_s)}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Geometry can be made more explicit:

Geometry can be made more explicit:

Suppose  $(R, \mathfrak{m}, k)$  is a local ring, so it can be understood as in correspondence with a point x of some LRS X. Using the map of k-algs  $k \to R \twoheadrightarrow R/\mathfrak{m} = k$ , we get

$$\mathfrak{m}_{\mathfrak{m}^2} \xrightarrow{\varphi} \Omega_{R/k} \otimes_R k \to \Omega_{k/k} = 0$$

Geometry can be made more explicit:

Suppose  $(R, \mathfrak{m}, k)$  is a local ring, so it can be understood as in correspondence with a point x of some LRS X. Using the map of k-algs  $k \to R \twoheadrightarrow R/\mathfrak{m} = k$ , we get

$$\mathfrak{m}_{\mathfrak{m}^2} \xrightarrow{\varphi} \Omega_{R/k} \otimes_R k \to \Omega_{k/k} = 0$$

But  $\varphi$  is injective too! To see this, we'll use the fact that Hom(-, k) is left exact, and check that

$$\operatorname{Hom}_k(\Omega_{R/k} \otimes_R k, k) \xrightarrow{\varphi_*} \operatorname{Hom}_k(\mathfrak{m}/\mathfrak{m}^2, k)$$

うして ふゆ とう かんし とう うくしゃ

is surjective.

$$\mathfrak{m}_{\mathfrak{m}^2} \xrightarrow{\varphi} \Omega_{R/k} \otimes_R k \to 0$$

$$\mathfrak{m}_{\mathfrak{m}^{2}} \xrightarrow{\varphi} \Omega_{R/k} \otimes_{R} k \to 0$$
$$0 \to \operatorname{Hom}_{k}(\Omega_{R/k} \otimes_{R} k, k) \xrightarrow{\varphi_{*}} \operatorname{Hom}_{k}(\mathfrak{m}/\mathfrak{m}^{2}, k)$$

$$\mathfrak{m/m^2} \xrightarrow{\varphi} \Omega_{R/k} \otimes_R k \to 0$$
$$0 \to \operatorname{Hom}_k(\Omega_{R/k} \otimes_R k, k) \xrightarrow{\varphi_*} \operatorname{Hom}_k(\mathfrak{m/m^2}, k)$$

Why  $\operatorname{Hom}(-, k)$ ?!?!



$$\mathfrak{m}_{\mathfrak{m}^{2}} \xrightarrow{\varphi} \Omega_{R/k} \otimes_{R} k \to 0$$
$$0 \to \operatorname{Hom}_{k}(\Omega_{R/k} \otimes_{R} k, k) \xrightarrow{\varphi_{*}} \operatorname{Hom}_{k}(\mathfrak{m}/\mathfrak{m}^{2}, k)$$

Why Hom(-, k)?!?! Because  $\mathfrak{m}/\mathfrak{m}^2$  is the Zariski cotangent space at x, and its k-vector space dual Hom $_k(\mathfrak{m}/\mathfrak{m}^2, k)$  is the tangent space, so it's reasonable to look at.

- ロ ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □

$$\mathfrak{m}_{\mathfrak{m}^{2}} \xrightarrow{\varphi} \Omega_{R/k} \otimes_{R} k \to 0$$
$$0 \to \operatorname{Hom}_{k}(\Omega_{R/k} \otimes_{R} k, k) \xrightarrow{\varphi_{*}} \operatorname{Hom}_{k}(\mathfrak{m}/\mathfrak{m}^{2}, k)$$

Why Hom(-, k)?!?! Because  $\mathfrak{m}/\mathfrak{m}^2$  is the Zariski cotangent space at x, and its k-vector space dual Hom $_k(\mathfrak{m}/\mathfrak{m}^2, k)$  is the tangent space, so it's reasonable to look at.

Idea: To show  $\varphi_*$  is surjective, we show any k-linear morphism  $\psi : \mathfrak{m}/\mathfrak{m}^2 \to k$  lifts to  $\Omega_{R/k} \otimes_R k \to k$ . Define a map  $R \to k$  by r = a+b for  $a \in k$  and  $b \in \mathfrak{m}$ ; check that  $r \mapsto \psi(b)$  is a derivation. Then show  $\varphi_*$  is surjective via universal property of  $\Omega_{R/k}$ .

$$\mathfrak{m}_{\mathfrak{m}^{2}} \xrightarrow{\varphi} \Omega_{R/k} \otimes_{R} k \to 0$$
$$0 \to \operatorname{Hom}_{k}(\Omega_{R/k} \otimes_{R} k, k) \xrightarrow{\varphi_{*}} \operatorname{Hom}_{k}(\mathfrak{m}/\mathfrak{m}^{2}, k)$$

Why Hom(-, k)?!?! Because  $\mathfrak{m}/\mathfrak{m}^2$  is the Zariski cotangent space at x, and its k-vector space dual Hom $_k(\mathfrak{m}/\mathfrak{m}^2, k)$  is the tangent space, so it's reasonable to look at.

Idea: To show  $\varphi_*$  is surjective, we show any k-linear morphism  $\psi : \mathfrak{m}/\mathfrak{m}^2 \to k$  lifts to  $\Omega_{R/k} \otimes_R k \to k$ . Define a map  $R \to k$  by r = a+b for  $a \in k$  and  $b \in \mathfrak{m}$ ; check that  $r \mapsto \psi(b)$  is a derivation. Then show  $\varphi_*$  is surjective via universal property of  $\Omega_{R/k}$ . So Kähler differentials tell us geometry!  $\Omega_{R/k} \otimes_R k \cong \mathfrak{m}/\mathfrak{m}^2$  is the cotangent space.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 $\Omega_{A/k}$  is differentiation in module form. From last year's CARES:  $J^1A$  is differentiation in k-algebra form. One might wonder: is there a connection?

 $\Omega_{A/k}$  is differentiation in module form. From last year's CARES:  $J^1A$  is differentiation in k-algebra form. One might wonder: is there a connection? Yes! And it's exactly what you hope. The functor Sym :  $\mathbf{Mod}_k \to \mathbf{Alg}_k$  is the natural way to take a module to an algebra. And indeed,

 $J^1 A \cong \operatorname{Sym} \Omega_{A/k}.$ 

You can also build out differential forms à la Calculus 3 in the natural way. Let  $\Omega^p_{A/k}$  be the *p*th exterior power of  $\Omega_{A/k}$  in the category of A-modules.

You can also build out differential forms à la Calculus 3 in the natural way. Let  $\Omega^p_{A/k}$  be the *p*th exterior power of  $\Omega_{A/k}$  in the category of A-modules.

The differential  $d: \Omega^p_{A/k} \to \Omega^{p+1}_{A/k}$  satisfies  $d^2 = 0$  and there is a multiplicative map  $\Omega^p_{A/k} \otimes_A \Omega^q_{A/k} \to \Omega^{p+q}_{A/k}$ , so we get a differential graded algebra / cochain complex  $\Omega^{\bullet}_{A/k}$ .

You can also build out differential forms à la Calculus 3 in the natural way. Let  $\Omega^p_{A/k}$  be the *p*th exterior power of  $\Omega_{A/k}$  in the category of A-modules.

The differential  $d: \Omega^p_{A/k} \to \Omega^{p+1}_{A/k}$  satisfies  $d^2 = 0$  and there is a multiplicative map  $\Omega^p_{A/k} \otimes_A \Omega^q_{A/k} \to \Omega^{p+q}_{A/k}$ , so we get a differential graded algebra / cochain complex  $\Omega^{\bullet}_{A/k}$ .

Taking cohomology gives us de Rham cohomology

$$h^i(\Omega^{\bullet}_{A/k}) \coloneqq H^i_{dR}(A/k).$$

You can also build out differential forms à la Calculus 3 in the natural way. Let  $\Omega^p_{A/k}$  be the *p*th exterior power of  $\Omega_{A/k}$  in the category of A-modules.

The differential  $d: \Omega^p_{A/k} \to \Omega^{p+1}_{A/k}$  satisfies  $d^2 = 0$  and there is a multiplicative map  $\Omega^p_{A/k} \otimes_A \Omega^q_{A/k} \to \Omega^{p+q}_{A/k}$ , so we get a differential graded algebra / cochain complex  $\Omega^{\bullet}_{A/k}$ .

Taking cohomology gives us de Rham cohomology

$$h^i(\Omega^{\bullet}_{A/k}) \coloneqq H^i_{dR}(A/k).$$

Connect this to Duncan's 15 Sept talk about the Koszul complex and Čech / sheaf cohomology!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Homological algebra and derived functors: we have two sequences which are exact on the right:

$$\begin{split} &\#1: k \to R \to S \Rightarrow \Omega_{R/k} \otimes_R S \to \Omega_{S/k} \to \Omega_{S/R} \to 0. \\ &\#2: k \to R \xrightarrow{\psi} S \Rightarrow \overset{\text{ker}}{\longrightarrow} \psi'_{\text{ker}} \psi^2 \to \Omega_{R/k} \otimes_R S \to \Omega_{S/k} \to 0. \end{split}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Homological algebra and derived functors: we have two sequences which are exact on the right:

$$\begin{split} &\#1: k \to R \to S \Rightarrow \Omega_{R/k} \otimes_R S \to \Omega_{S/k} \to \Omega_{S/R} \to 0. \\ &\#2: k \to R \xrightarrow{\psi} S \Rightarrow \overset{\text{ker}}{=} \psi /_{\text{ker}} \psi^2 \to \Omega_{R/k} \otimes_R S \to \Omega_{S/k} \to 0. \end{split}$$

You might want to extend to long exact sequences. This is kinda funky since  $\mathbf{Alg}_k$  is not an abelian category. But it can be done *homotopically*. You get something called the cotangent complex  $\mathbf{L}_{A/k}$ .

# Thank you!

- ロ ト - 4 日 ト - 4 日 ト - 4 日 ト - 9 へ ()

Exact sequences. The Stacks project https://stacks.math.columbia.edu Tags: [00RS] [00RU]

Jet spaces. Jet schemes and singularities, Lawrence Ein & Mircea Mustață $\mathbf{Ex}~2.5$ 

Homotopy and  $\mathbf{L}_{A/k}$ . An introduction to homological algebra, Charles Weibel §8.8. DAG IV: Deformation Theory, Jacob Lurie